

Technische Anschlussbedingungen -Heizwasser

für die Versorgung aus den Fernwärmenetzen der Stadtwerke Prenzlau GmbH

Fassung 01.01.2022

Herausgeber:

Stadtwerke Prenzlau GmbH (SWPz)

17291 Prenzlau, Freyschmidtstraße 20

Telefon +49 3984 853-0 Telefax +49 3984 853-199

E-Mail www.stadtwerke-prenzlau.de info@stadtwerke-prenzlau.de

Vorbemerkungen

Gemäß § 17 AVBFernwärmeV vom 20.06.1980 geben Fernwärmeversorgungsunternehmen (FVU) Technische Anschlussbedingungen (TAB) heraus, die eine Zusammenfassung der für den konkreten Versorgungsfall geltenden technischen Regeln darstellen. Diese sind Vertragsbestandteil und somit verbindlich für die mit der Planung und Errichtung beauftragten Unternehmen.

Die gemäß § 17 Abs. 2 der AVBFernwärmeV erforderliche Anzeige der vorliegenden Technischen Anschlussbedingungen bei der zuständigen Behörde ist erfolgt.

Grundlage dieser TAB Fernwärme ist das Merkblatt AGFW FW 515 des AGFW | Der Energieeffizienzverband für Wärme, Kälte und KWK e.V. Stresemannallee 30, 60596 Frankfurt/Main.

Inhalt

		Seite
1	Anwendungsbereich	8
2	Allgemeines	8
2.1	Gültigkeit	8
2.2	Anschluss an die Fernwärmeversorgung	8
2.3	Vom Kunden einzureichende Unterlagen	9
2.4	Wärmeträger	9
2.5	In- und Außerbetriebsetzung	9
2.6	Haftung	9
2.7	Schutzrechte	9
3	Heizlast / vorzuhaltende Wärmeleistung	9
3.1	Heizlast für Raumheizung	10
3.2	Heizlast für Raumluftheizung	10
3.3	Heizlast für Trinkwassererwärmung	10
3.4	Heizlast für Kälteerzeugung	10
3.5	Sonstige Heizlasten	10
3.6	Vorzuhaltende Wärmeleistung	10
4	Temperaturfahrweisen von Fernwärmenetzen	10
4.1	Konstante Fahrweise	11
4.2	Gleitende Fahrweise	12
4.3	Gleitend-konstante Fahrweise	13
5	Hausanschluss	15
5.1	Hausanschlussleitung	15
5.2	Hauseinführung	15
5.3 5.3.1 5.3.2 5.3.3	Hausanschluss in Gebäuden Potentialausgleich Hausanschlussraum Hausanschlusswand	16 17
5.4 5.4.1 5.4.2	HausstationÜbergabestation Hauszentrale	20
5.5	Hausanlage	20
5.6	Leistungs-, Liefer- und Eigentumsgrenze	20
6	Hauszentrale Raumheizung	22
6.1	Direkter Anschluss ohne Beimischregelung	23
6.2	Direkter Anschluss mit Beimischregelung	23
6.3 6.3.1	Indirekter Anschluss Temperaturregelung	

6.3.2 6.3.3	Rücklauftemperaturbegrenzung	
6.3.4	Volumenstrom	
6.3.5 6.3.6	Druckabsicherung Werkstoffe und Verbindungselemente	
6.3.7	Sonstiges	
6.3.8	Wärmeübertrager	
7	Hauszentrale Raumluftheizung (RLH)	31
7.1	Direkter Anschluss ohne Beimischregelung	31
7.2	Direkter Anschluss mit Beimischregelung	31
7.3	Indirekter Anschluss	31
7.3.1	Temperaturregelung	
7.3.2	Temperaturabsicherung konstante Netzfahrweise	
7.3.3	Rücklauftemperaturbegrenzung	
7.3.4	Volumenstrom	
7.3.5 7.3.6	Druckabsicherung Werkstoffe und Verbindungselemente	
7.3.0 7.3.7	Sonstiges	
7.3.8	Wärmeübertrager	
8	Hauszentrale Trinkwassererwärmung	40
8.1	Direkter Anschluss ohne Beimischregelung	
8.1.1	Temperaturregelung	42
8.1.2	Temperaturabsicherung	
8.1.3	Rücklauftemperaturbegrenzung	
8.1.4	Volumenstrom	
8.1.5	Druckabsicherung	
8.1.6	Werkstoffe und Verbindungselemente	
8.1.7	Sonstiges	
8.1.8	Wärmeübertrager	
8.2	Direkter Anschluss mit Beimischregelung	
8.3	Indirekter Anschluss	
8.3.1 8.3.2	Temperaturregelung Temperaturabsicherung	
6.3.2 8.3.3	Volumenstrom	
8.3.4	Druckabsicherung	
8.3.5	Werkstoffe und Verbindungselemente	
8.3.6	Sonstiges	
8.3.7	Wärmeübertrager	58
9	Hausanlage Raumheizung	59
9.1	Direkter Anschluss	59
9.2	Indirekter Anschluss	59
9.2.1	Temperaturregelung	
9.2.2	Hydraulischer Abgleich	
9.2.3	Rohrleitungssysteme	
9.2.4	Heizflächen	
9.2.5 9.2.6	Armaturen/Druckhaltung	
	C .	
10	Hausanlage Raumluftheizung	61

10.1	Direkter Anschluss	61
10.2 10.2.1 10.2.2 10.2.3 10.2.4 10.2.5 10.2.6	Indirekter Anschluss Temperaturregelung Hydraulischer Abgleich Rohrleitungssysteme Heizregister Armaturen/Druckhaltung Werkstoffe und Verbindungselemente	61 61 62 62
11	Hausanlage Trinkwassererwärmung	63
11.1	Werkstoffe und Verbindungselemente	63
11.2	Speicher	63
11.3	Vermeidung von Legionellen	64
11.4	Zirkulation	64
12	Solarthermische Anlagen	64
12.1	Anschluss an die Hausstation	64
12.2	Vom Kunden einzureichende Unterlagen	65
12.3	Sicherheitstechnische Anforderungen	65
12.4 12.4.1 12.4.2 12.4.3	Unterstützung der Trinkwassererwärmung Solaranlage mit bivalent versorgtem Speicher-Trinkwassererwärmer Solaranlage mit Speicher-Trinkwassererwärmer und außen liegendem Wärmeübertrager für die Nachheizung Solaranlage mit Pufferspeicher und Trinkwassererwärmer mit außen liegendem	66 67
12.1.0	Wärmeübertrager für die Nachheizung	
12.5	Unterstützung von Trinkwassererwärmung und Raumheizung	69
12.6	Rücklauftemperaturbegrenzung	71
13	Wohnungsstationen	72
13.1	Allgemeines	72
13.2	Anschlussarten	72
13.3	Warmhaltefunktion	73
13.4	Sonstiges	73
14	Abkürzungen, Formelzeichen und verwendete Begriffe	74
15	Gesetzliche Vorgaben und Technische Regeln	76
15.1	Verordnungen	76
15.2 15.2.1 15.2.2	NormenDIN-NormenEN-Normen	76
15.3 15.3.1	DVS-RichtlinienVDE-Normen	
15.4	Technische Regeln des AGFW	80
15.5	Technische Regeln des DVGW	80
15.6	VDI-Richtlinien	81

15.7	Literatur	81
16	Symbole nach DIN 4747-1	82
17	Übersicht Werkstoffe und Verbindungstechniken	86
18	Netzparameter der Fernwärmenetze Prenzlau	90
19	Schaltschemata FW	91

1 Anwendungsbereich

Diese Technischen Anschlussbedingungen Heizwasser (TAB-HW) einschließlich der dazugehörigen Datenblätter gelten für die Planung, den Anschluss und den Betrieb neuer Anlagen, die an die mit Heizwasser betriebenen Fernwärmenetze von SWPz angeschlossen werden. Sie sind Bestandteil des zwischen dem Kunden und SWPz abgeschlossenen Anschluss- und Versorgungsvertrages.

Sie gelten in der überarbeiteten Form mit Wirkung vom 01.01.2022.

Für bereits in Betrieb befindliche Anlagen gilt diese Fassung der TAB-HW nur bei wesentlichen Änderungen in den Grenzen des § 4 Abs. 3 Satz 5 AVBFernwärmeV.

Änderungen und Ergänzungen der TAB-HW gibt SWPz in geeigneter Weise (z. B. Amtsblatt, postalisch und ergänzend Internet) bekannt. Sie werden damit Bestandteil des Vertragsverhältnisses zwischen dem Kunden und SWPz.

2 Allgemeines

Diese Technischen Anschlussbedingungen wurden aufgrund des § 4 Abs. 3 und § 17 der Verordnung über Allgemeine Bedingungen für die Versorgung mit Fernwärme (AVBFernwärmeV) festgelegt und sind von dem Kunden zu beachten.

2.1 Gültigkeit

Für neu zu erstellende Fernwärmeversorgungsanlagen gilt die jeweils neueste Fassung der Technischen Anschlussbedingungen. Diese kann bei Stadtwerke Prenzlau GmbH (nachstehend SWPz) angefordert bzw. im Internet unter www.stadtwerke-prenzlau.de abgerufen werden.

2.2 Anschluss an die Fernwärmeversorgung

Die Herstellung eines Anschlusses an ein Fernwärmenetz und die spätere Inbetriebsetzung der Hausstation sind vom Kunden unter Verwendung der dafür vorgesehenen Vordrucke zu beantragen.

Der Kunde ist verpflichtet, die anfallenden Arbeiten von einem qualifizierten Fachbetrieb ausführen zu lassen, welcher der Industrie- und Handelskammer zugehörig oder in die Handwerksrolle der Handwerkskammer eingetragen ist. Er veranlasst den Fachbetrieb, entsprechend den jeweils gültigen TAB-HW zu arbeiten und diese vollinhaltlich zu beachten. Das Gleiche gilt auch bei Reparaturen, Ergänzungen und Veränderungen an der Anlage oder an Anlagenteilen.

SWPz haftet nicht für Schäden, die aus der Abweichung von den Technischen Anschlussbedingungen entstehen. Die Verantwortung für die Einhaltung der TAB-HW liegt allein beim Bauherrn und seinen Bauausführenden.

In Verträgen mit Bauausführenden sind die TAB-HW zum Gegenstand der Leistungsbeschreibung zu machen und den Bauausführenden die Haftung für ihre Einhaltung aufzuerlegen. Werden durch Abweichungen von der TAB-HW Schäden verursacht oder der Energieverbrauch erhöht, kann SWPz dafür keine Haftung übernehmen.

Zweifel über Auslegung und Anwendung sowie Ausnahmen von der TAB-HW sind vor Beginn der Arbeiten mit SWPz zu klären.

2.3 Vom Kunden einzureichende Unterlagen

- Antrag zur Herstellung eines Fernwärme-Hausanschlusses
- Daten der Hausanlage
- Prinzipschaltbild der Hausstation bzw. der Hauszentrale
- Antrag zur Inbetriebsetzung

2.4 Wärmeträger

Der Wärmeträger Wasser entspricht den Anforderungen nach AGFW FW 510 und kann eingefärbt sein. Fernheizwasser darf nicht verunreinigt oder der Anlage entnommen werden.

2.5 In- und Außerbetriebsetzung

Die Hausanlage ist vor Anschluss an die Hauszentrale mit Kaltwasser zu spülen, dies ist zu dokumentieren. Die Druckfestigkeit der anzuschließenden Hausanlage ist durch eine Druckprüfung nach VOB Teil C / DIN 18380, gemessen am tiefsten Punkt der Hausanlage, nachzuweisen und zu dokumentieren.

Die Inbetriebsetzung ist bei SWPz spätestens fünf Arbeitstage vorher schriftlich zu beantragen.

Zur Inbetriebsetzung ist die Anlage in Abstimmung und Anwesenheit von SWPz mit Fernheizwasser zu füllen. Die Erstfüllung der Hausanlage kann aus dem Fernheizwassernetz erfolgen und ist kostenlos. Nachfüllungen aus dem Fernheizwassernetz sind melde- und kostenpflichtig, automatische Nachfülleinrichtungen sind zugelassen.

Eine dauerhafte Außerbetriebsetzung eines Hausanschlusses ist zehn Arbeitstage vorher bei SWPz schriftlich zu beantragen.

Eine vorübergehende Außerbetriebsetzung ist SWPz rechtzeitig mitzuteilen.

2.6 Haftung

Alle in Verantwortung des Kunden zu errichtenden Anlagen unterliegen keiner Aufsichts- und Prüfungspflicht durch SWPz. SWPz steht jedoch für alle diese TAB-HW betreffenden Fragen zur Verfügung.

Für die Richtigkeit der in diesen TAB-HW enthaltenen Hinweise und Forderungen wird von SWPz keine Haftung übernommen.

Für alle Tätigkeiten, die vom Personal der SWPz in Kundenanlagen ausgeführt werden, gelten die Haftungsregelungen des § 6 der AVB FernwärmeV.

2.7 Schutzrechte

SWPz übernimmt keine Haftung dafür, dass die in den TAB-HW vorgeschlagenen technischen Ausführungsmöglichkeiten frei von Schutzrechten Dritter sind. Notwendige Recherchen bei den Patentund Markenämtern (und allen ähnlichen Einrichtungen) hat der Verwender der TAB-HW selbst vorzunehmen und sämtliche eventuell anfallenden Kosten (Lizenzgebühren usw.) selbst zu tragen.

Diesbezügliche Rechtsstreitigkeiten muss der Verwender im eigenen Namen und auf eigene Kosten durchführen.

3 Heizlast / vorzuhaltende Wärmeleistung

Die Heizlastberechnungen und die Ermittlung der Wärmeleistung sind auf Verlangen SWPz vorzulegen.

3.1 Heizlast für Raumheizung

Die Berechnung der Heizlast erfolgt nach DIN EN 12831. In besonderen Fällen kann ein Ersatzverfahren angewandt werden.

3.2 Heizlast für Raumluftheizung

Die Heizlast für raumlufttechnische Anlagen ist nach DIN V 18599 zu ermitteln.

3.3 Heizlast für Trinkwassererwärmung

Die Heizlast für die Trinkwassererwärmung in Wohngebäuden wird nach DIN 4708 ermittelt. In besonderen Fällen kann ein Ersatzverfahren angewandt werden.

3.4 Heizlast für Kälteerzeugung

Die Heizlast für die Kälteerzeugung ist unter Berücksichtigung der technischen Parameter der Kälteanlagen und der Kühllastberechnung nach VDI 2078 zu ermitteln.

3.5 Sonstige Heizlasten

Die Heizlast anderer Verbraucher und die Heizlastminderung durch Wärmerückgewinnung sind gesondert auszuweisen.

3.6 Vorzuhaltende Wärmeleistung

Aus den Heizlastwerten dem vorstehenden Abschnitt 3.1 bis 3.5 wird die vom Kunden zu bestellende und von SWPz vorzuhaltende Wärmeleistung abgeleitet.

Die vorzuhaltende Wärmeleistung wird nur bei einer zu vereinbarenden niedrigen Außentemperatur angeboten. Bei höheren Außentemperaturen wird die Wärmeleistung entsprechend angepasst.

Aus der vorzuhaltenden Wärmeleistung wird in Abhängigkeit von der Differenz zwischen Vor- und Rücklauftemperatur an der Übergabestation der Fernheizwasser-Volumenstrom ermittelt und von SWPz begrenzt.

4 Temperaturfahrweisen von Fernwärmenetzen

Die Größe der Temperaturspreizung, also die Differenz zwischen der Vor- und der Rücklauftemperatur einer Fernwärmeversorgung, ist elementar für die Wirtschaftlichkeit eines Fernwärmeversorgungssystems. Der Massenstrom und die Temperaturdifferenz sind direkt proportional zu der transportierten Wärmeleistung: $Q = m \cdot c_p \cdot \Delta\theta$. Die spezifische Wärmekapazität c_p kann in dem in der Praxis genutzten Temperaturband als konstante Größe betrachtet angenommen werden.

Unterschiedliche Betriebszustände von Kundenanlagen, die ihre Ursache z. B. in unterschiedlichen technischen Konzepten haben können, führen zu unterschiedlichen Leistungsanforderungen an ein Fernwärmesystem:

- Die benötigte Leistung von statischen Heizungen ist in hohem Maße an die Außentemperatur gekoppelt und erreicht bei der niedrigsten Außentemperatur ihr Maximum.
- Bei Raumluftheizungen mit Außen-/Umluftbetrieb ist neben der Außentemperatur zusätzlich das Verhältnis der beiden Luftanteile für den Leistungsbedarf mitbestimmend.
- Trinkwassererwärmungsanlagen haben im Lade- und im Nachheizbetrieb jeweils quasi konstante Leistungsanforderungen. Die gewünschte Warmwassertemperatur und die Ladezeit bzw. der

Zapfvolumenstrom bestimmen u. a. die erforderliche Leistung. Darüber hinaus muss aus hygienischen Gründen für eine Trinkwassererwärmung eine Mindest-Vorlauftemperatur des Fernheizwassers von etwa 70 °C beim Kunden eingehalten werden.

Prozesswärmeanlagen (z. B. für Lackierbetriebe) benötigen eine durchgehend konstante Leistung und häufig eine ebenso konstante Mindest-Vorlauftemperatur.

Die Höhe der vom Fernheizwasser transportierten Leistung ergibt sich bei begrenztem Volumenstrom aus der jeweils vorliegenden Vorlauftemperatur und der Rücklauftemperatur. Fernwärmeversorgungsunternehmen nutzen bei der häufigsten Art der Versorgung, der Bereitstellung von Raumwärme, die mit zunehmender Außentemperatur zurückgehende Leistungsanforderung der Kundenanlagen dazu, die Vorlauftemperatur variabel – in bestimmten Grenzen – einzustellen. Damit werden mehrere Ziele verfolgt: die Minimierung von Wärmeverlusten beim Transport des Fernheizwassers, eine Erhöhung der Lebensdauer von Rohrleitungssystemen (KMR), eine Herabsetzung der Stromverlustkennziffer bei der Wärmeerzeugung durch Kraft-Wärme-Kopplung sowie eine erleichterte Arbeitsweise bei Instandhaltungsarbeiten am Leitungssystem. Darüber hinaus wird die Wirksamkeit einer Volumenstrombegrenzung in der Hauszentrale unterstützt.

Grundsätzlich stehen dem Fernwärmeversorgungsunternehmen drei Betriebsweisen für die Vorlauftemperatur des Fernheizwassers zur Verfügung: konstant, gleitend und gleitend-konstant.

- Bei einer <u>konstanten</u> Betriebsweise wird die Vorlauftemperatur unabhängig von der herrschenden Außentemperatur auf einen festen Wert eingestellt. Dies kommt i. d. R. zum Tragen, wenn über das Fernwärmesystem Anlagen mit Prozesswärme (und ggf. hoher Temperatur) versorgt werden sollen, Ab- und Adsorptionsanlagen der Kälteerzeugung stellen einen weiteren geeigneten Anwendungsfall dar.
- Bei einer gleitenden Betriebsweise wird die Vorlauftemperatur ausschließlich nach den Erfordernissen einer Raumwärmeversorgung mit statischen Heizflächen in Abhängigkeit von der herrschenden Außentemperatur eingestellt. Dabei liegen die Temperaturgrenzen des Vorlaufs am unteren Ende bei der mindestens zu erzielenden Raumtemperatur (z. B. 25 °C). Die höchste Vorlauftemperatur wird i. d. R. bei der Norm-Außentemperatur (z. B. –12 °C) erreicht. Sinken die Außentemperaturen weiter auf Werte unterhalb der Norm, so bleibt die Vorlauftemperatur konstant bei ihrem Höchstwert (z. B. bei 130 °C).
- Bei der <u>gleitend-konstanten</u> Betriebsweise handelt es sich um eine Mischform der beiden zuerst beschriebenen Varianten. Die Vorlauftemperatur wird auch hier in Abhängigkeit von der Außentemperatur eingestellt, zusätzlich wird jedoch ein Mindestwert (z. B. 80 °C) nicht unterschritten. Mit dieser Betriebsweise können sowohl Anlagen der Raumwärmeversorgung als auch Anlagen der Trinkwassererwärmung versorgt werden. Die Betriebsweise stellt den Standardfall dar.

In Einzelfällen bestehen Fernwärmesysteme aus zwei (selten mehr) Vorlaufleitungen und einer gemeinsamen Rücklaufleitung. Die Vorlaufleitungen können dann mit unterschiedlichen Temperaturfahrweisen betrieben werden, z. B. die eine Vorlaufleitung rein gleitend für die ausschließliche Versorgung von Raumwärmeanlagen und die zweite Vorlaufleitung mit einer konstanten Temperatur für die Bedienung von Trinkwassererwärmungs-, Kälte-, Raumluftheizungs- oder Prozesswärmeanlagen.

4.1 Konstante Fahrweise

Die Netzvorlauftemperatur wird unabhängig von der Außentemperatur auf einen konstanten Wert eingestellt. Prinzipiell können alle gebräuchlichen Wärmeverbraucher angeschlossen werden, wenn die angebotene Temperatur für den jeweiligen Verwendungszweck ausreicht. Eine Vorlauftemperaturregelung nach den Anforderungen des jeweiligen Verbrauchers ist in der Hausstation vorzusehen.

Aufgrund der konstanten Fahrweise ist es möglich, die vorzuhaltende Wärmeleistung auch bei höheren Außentemperaturen anzubieten, was insbesondere beim Anschluss von technologischen Wärmeverbrauchern, Trinkwassererwärmungs- und Kälteanlagen von Bedeutung ist.

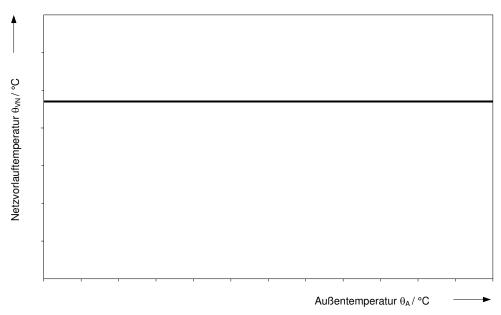


Abbildung 1: Netzvorlauftemperatur θ_{VN} in Abhängigkeit von der Außentemperatur θ_{A} ; prinzipieller Verlauf einer konstanten Fahrweise

4.2 Gleitende Fahrweise

Die Netzvorlauftemperatur wird in Abhängigkeit von der Witterung geregelt. Bei fallender Außentemperatur steigt die Netzvorlauftemperatur gleitend bis zu einem Maximalwert. Steigt die Außentemperatur, so sinkt die Netzvorlauftemperatur gleitend bis schließlich die Heizgrenze erreicht ist und die Wärmeversorgung eingestellt wird. Die gleitende Fahrweise ist nur zur Versorgung von Heizungsanlagen geeignet. Der Anschluss witterungsunabhängiger Verbraucher, z. B. technologische Wärme oder Trinkwassererwärmungsanlagen ist nicht möglich.

Als Führungsgröße wird nicht die aktuell gemessene Außentemperatur verwendet, sondern ein über einen längeren Zeitraum gemittelter Wert, evtl. unter Berücksichtigung der Prognose für die folgenden Tage. Mit dieser Vorgehensweise wird dem mittleren Speichervermögen der versorgten Gebäude und der Laufzeit des Fernheizwassers im Fernwärmenetz Rechnung getragen.

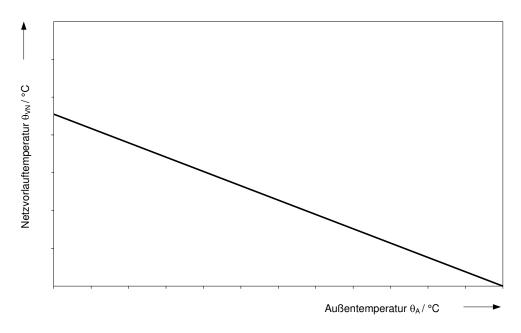


Abbildung 2: Netzvorlauftemperatur θ_{VN} in Abhängigkeit von der Außentemperatur θ_{A} ; prinzipieller Verlauf einer gleitenden Fahrweise

4.3 Gleitend-konstante Fahrweise

Die Netzvorlauftemperatur wird innerhalb festgelegter Grenzwerte in Abhängigkeit von der Witterung geregelt. Bei fallender Außentemperatur steigt die Netzvorlauftemperatur gleitend bis zu einem Maximalwert. Steigt die Außentemperatur, so sinkt die Netzvorlauftemperatur gleitend bis zum Minimalwert. Die Höhe dieses Minimalwertes wird durch die mindestens vorzuhaltende Netzvorlauftemperatur, z. B. für eine Trinkwassererwärmung bestimmt.

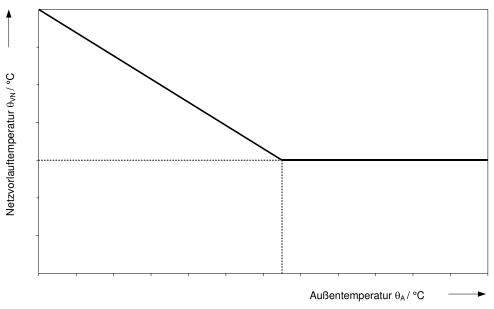


Abbildung 3: Netzvorlauftemperatur θ_{VN} in Abhängigkeit von der Außentemperatur θ_{A} ; prinzipieller Verlauf einer gleitend-konstanten Fahrweise

Mit der gleitend-konstanten Fahrweise können gleichzeitig Raumheizungs-, Trinkwassererwärmungs-, Raumluftheizungs- und Kälteanlagen versorgt werden. Wird das Temperaturniveau des Konstantbereichs ausreichend hoch eingestellt, ist auch die Versorgung von technologischer Wärme möglich. Durch eine Nachregelung der Heizmittelvorlauftemperatur in der Hausstation ist eine von der Temperaturfahrweise des Fernwärmenetzes unabhängige, auf die Bedürfnisse des Verbrauchers zugeschnittene Betriebsweise hinsichtlich Vorlauftemperatur und Heizzeit möglich.

Als Führungsgröße wird nicht die aktuell gemessene Außentemperatur verwendet, sondern ein über einen längeren Zeitraum gemittelter Wert, evtl. unter Berücksichtigung der Prognose für die folgenden Tage. Mit dieser Vorgehensweise wird dem mittleren Speichervermögen der versorgten Gebäude und der Laufzeit des Fernheizwassers im Fernwärmenetz Rechnung getragen.

5 Hausanschluss

5.1 Hausanschlussleitung

Die Hausanschlussleitung verbindet das Verteilungsnetz mit der Übergabestation. Die technische Auslegung und Ausführung bestimmt SWPz. Die Leitungsführung bis zur Übergabestation ist zwischen dem Kunden und SWPz abzustimmen.

Damit Wartungs- und Instandsetzungsarbeiten durchgeführt werden können, dürfen Fernwärmeleitungen außerhalb von Gebäuden innerhalb eines Schutzstreifens nicht überbaut werden. Dies gilt ebenso für die Lagerung von Materialien und die Bepflanzung über den Leitungen, wenn dadurch die Zugänglichkeit und die Betriebssicherheit beeinträchtigt werden können. Die Schutzanweisung, die u. a. die Breite des Schutzstreifens enthält, ist zu beachten; sie kann bei SWPz angefordert werden.

5.2 Hauseinführung

Ort, Lage und Art der Hauseinführung werden zwischen dem Kunden und SWPz abgestimmt.

5.3 Hausanschluss in Gebäuden

Für die vertragsgemäße Übergabe der Fernwärme ist nach AVBFernwärmeV vom Kunden ein geeigneter Raum oder Platz zur Verfügung zu stellen. Lage und Abmessungen sind mit SWPz rechtzeitig abzustimmen. Die erforderliche Größe richtet sich nach dem Platzbedarf der Übergabestation, der Hauszentrale sowie evtl. zusätzlichen Betriebseinrichtungen (z. B. Trinkwassererwärmungsanlage, Pufferspeicher).

Für eine ausreichende Belüftung ist zu sorgen. Die Umgebungstemperatur im Bereich der Übergabestation darf dauerhaft 30 °C nicht überschreiten. Aus hygienischen Gründen sind in Kaltwasserleitungen Wassertemperaturen ≥ 25 °C zu vermeiden.

Die einschlägigen Vorschriften über Wärme- und Schalldämmung sind einzuhalten. Hausanschlusseinrichtungen sollten nicht neben oder unter Schlafräumen und sonstigen, gegen Geräusche zu schützende Räume angeordnet sein.

Für Wartungs- und Reparaturarbeiten sind eine ausreichende Beleuchtung und eine Schutzkontaktsteckdose notwendig.

Nach Bedarf ist für die Hausstation eine DIN CEE-Steckdose, 230 V Wechselstrom, mit 16 A abgesichert bereit zu stellen. Eine ausreichende Entwässerung und eine Kaltwasserzapfstelle werden empfohlen.

Wände, an denen Anschluss- und Betriebseinrichtungen befestigt werden, müssen den zu erwartenden mechanischen Belastungen entsprechend ausgebildet sein und eine ebene Oberfläche aufweisen.

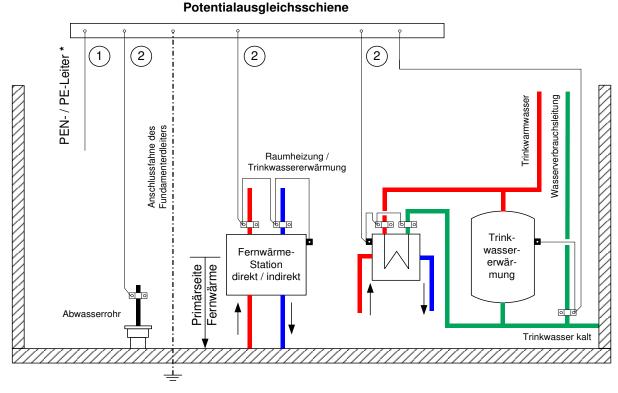
Die erforderliche Arbeits- und Bedienfläche ist nachfolgend (siehe Abschnitte 5.3.2 und 5.3.3) dargestellt und ist jederzeit freizuhalten.

Betriebsanleitungen und Hinweisschilder sind an gut sichtbarer Stelle anzubringen.

Die Anordnung der Gesamtanlage muss den Berufsgenossenschaftlichen Vorschriften (BGV) entsprechen.

Als Planungsgrundlage gilt DIN 18012.

Folgeschäden durch Nichteinhaltung, z. B. Wasserschaden bei fehlendem Bodenabfluss, führen zum Haftungsausschluss von SWPz.


5.3.1 Potentialausgleich

Elektrische Installationen und Potentialausgleich sind nach DIN 57100 und DIN VDE 0100 für Nassräume auszuführen.

Ein Hauptpotentialausgleich im Gebäude ist zwingend erforderlich. Der Potentialausgleich ist eine elektrische Verbindung, die die Körper elektrischer Betriebsmittel und fremder leitfähiger Teile auf gleiches oder annähernd gleiches Potential bringt. An dem Potentialausgleich sind u. a. folgende Komponenten anzuschließen:

- Fundamenterder,
- Stahlkonstruktionen (z. B. Rahmen der Hausstation),
- Heizungsleitungen (Vor- und Rücklauf sekundärseitig),
- Trinkwasserleitungen (kalt, warm und Zirkulation),
- Wärmeübertrager und Trinkwassererwärmer.

Die Inbetriebsetzung kann nur bei vorhandenem Potentialausgleich erfolgen.

* Verbindung mit PEN- / PE-Leiter vom Elektro-Hausanschluss nach VDE und TAB des Stromversorgers

Abbildung 4: Beispiel eines Potentialausgleichs

① Nicht jede Rohrleitung muss über eine eigene Leitung angeschlossen werden. Es dürfen auch mehrere Rohrleitungen miteinander verbunden und über eine unterbrechungsfreie Leitung an die Potentialausgleichsschiene angeschlossen werden.

Es sind grundsätzlich Schellen ohne Weichbleieinlage zu verwenden.

Die Querschnitte der Potentialausgleichsleitungen sind entsprechend DIN VDE 0100-540 zu bemessen. Die Mindestquerschnitte können der nachfolgenden Tabelle entnommen werden. Als größter Schutzleiter der Anlage gilt der vom Hauptverteiler abgehende Schutzleiter (PEN- / PE-Leiter) mit dem größten Querschnitt.

Bei der Verlegung ist auf ausreichende Befestigung zu achten. Die Potentialausgleichsleitungen können grün-gelb gekennzeichnet sein.

Für die Erdungsleitungen gelten die einschlägigen DIN-VDE-Bestimmungen, sie sind an die Potentialausgleichsschiene anzuschließen.

Querschnitt des größten Schutzleiter (PEN- / PE-Leiter) ① [mm²]	Querschnitt der Verbindung ② [mm²]
≤ 16	10
25	16
≥ 35	25

Tabelle 1: Mindestquerschnitte für Potentialausgleichsleitungen aus dem Werkstoff Kupfer

5.3.2 Hausanschlussraum

Nach DIN 18012 ist ein Hausanschlussraum in Gebäuden mit mehr als fünf Wohneinheiten erforderlich.

In dem Hausanschlussraum sollen die Übergabestation und gegebenenfalls die Hauszentrale eingebaut werden.

Der Raum sollte verschließbar und muss jederzeit für SWPz – Mitarbeiter und dessen Beauftragte zugänglich sein. Der Platzbedarf von Trinkwassererwärmungsanlagen ist vom eingesetzten System abhängig. Der erforderliche Platzbedarf ist mit SWPz abzustimmen.

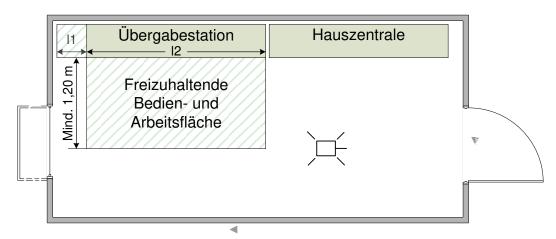


Abbildung 5: Hausanschlussraum

Platzbedarf von Fernwärme-Übergabestationen								
Temperatur- spreizung	Volumen- strom	Anschluss- wert	I1	12				
[K]	[m³/h]	[kW]	[m]	[m]				
30	1,3	45	0,40	0,80				
30	5,7	200	0,50	1,40				
30	10,0	350	0,60	1,60				
30	8,60	600	0,60	1,80				

Tabelle 2: Platzbedarf von Fernwärme-Übergabestationen in Hausanschlussräumen

5.3.3 Hausanschlusswand

Die Hausanschlusswand ist nach DIN 18012 für Gebäude mit bis zu fünf Wohneinheiten vorgesehen.

Die Hausanschlusswand dient der Anordnung und der Befestigung von Leitungen, Übergabestation und ggf. Betriebseinrichtungen.

Aufgrund des geringen Platzbedarfs ist eine anderweitige Nutzung des Raumes möglich. Die erforderlichen Arbeits- und Bedienflächen sind stets freizuhalten. Der Platzbedarf von Trink-wassererwärmungsanlagen ist vom eingesetzten System abhängig. Der erforderliche Platzbedarf ist mit SWPz abzustimmen.

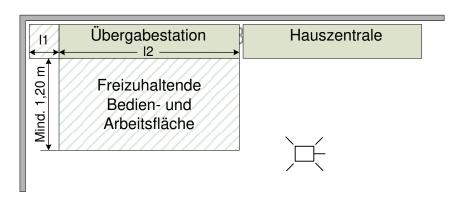


Abbildung 6: Hausanschlusswand

Platzbedarf von Fernwärme-Übergabestationen								
Temperatur- spreizung	Volumen- strom	Anschluss- wert	11	12				
[K]	[m³/h]	[kW]	[m]	[m]				
30	0,6	20	0,40	0,60				
30	1,3	45	0,40	0,80				

Tabelle 3: Platzbedarf von Fernwärme-Übergabestationen an Hausanschlusswänden

5.4 Hausstation

Die Hausstation besteht aus der Übergabestation und der Hauszentrale. Die Hausstation kann für den direkten oder den indirekten Anschluss konzipiert werden. SWPz entscheidet, ob der Anschluss direkt oder indirekt erfolgt. Ein direkter Anschluss liegt vor, wenn die Hausanlage vom Heizwasser aus dem Fernwärmenetz durchströmt wird. Ein indirekter Anschluss liegt vor, wenn das Heizwasser der Hausanlage durch Wärmeübertrager vom Fernwärmenetz getrennt wird.

Übergabestation und Hauszentrale können baulich getrennt oder in einer Einheit als Hausstation angeordnet sein. Ferner können mehrere Komponenten in Baugruppen zusammengefasst werden.

Für die Auslegung der Armaturen und Anlagenteile gelten DIN 4747-1 und die entsprechenden AGFW-Arbeitsblätter. Falls Druck- und/oder Temperaturabsicherungen in der Übergabestation vorzusehen sind, so müssen diese nach DIN 4747-1 ausgeführt werden.

Es sind die jeweils gültigen Vorschriften über Schall- und Wärmedämmung sowie Brandschutz zu berücksichtigen.

Erforderliche Elektroinstallationen sind nach DIN VDE 0100 auszuführen.

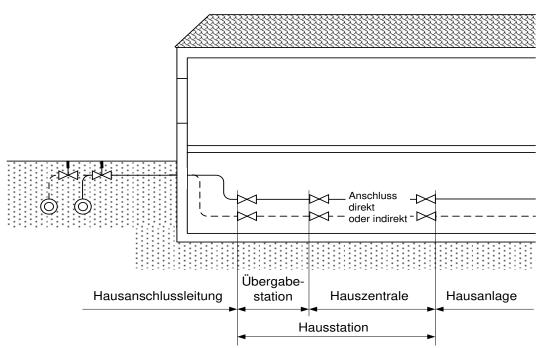


Abbildung 7: Hausanschlussleitung und Hausstation

5.4.1 Übergabestation

Die Übergabestation ist das Bindeglied zwischen der Hausanschlussleitung und der Hauszentrale und ist im Hausanschlussraum angeordnet. Sie dient dazu, die Wärme vertragsgemäß, z. B. hinsichtlich Druck, Temperatur und Volumenstrom, an die Hauszentrale zu übergeben (Übergabestelle).

Die Messeinrichtung zur Verbrauchserfassung kann ebenfalls in der Übergabestation untergebracht sein

Durch SWPz erfolgt die Festlegung der Stationsbauteile unter Berücksichtigung der vorzuhaltenden Wärmeleistung, des maximalen Volumenstromes, der erforderlichen Anschlussart – direkt oder indirekt – und der technischen Netzdaten nach Datenblatt.

Die Anordnung der Anlagenteile ist in den Schaltschemen dargestellt. Über Herstellung, Montage, Ergänzung oder Änderung der Übergabestation bestimmt SWPz.

SWPz stellt Angaben für die notwendige Aufstellungsfläche der Übergabestation zur Verfügung. Für die Instandhaltung der Übergabestation gelten die vertraglichen Vereinbarungen.

5.4.2 Hauszentrale

Die Hauszentrale ist das Bindeglied zwischen der Übergabestation und der Hausanlage. Sie dient der Anpassung der Wärmelieferung an die Hausanlage z. B. hinsichtlich Druck, Temperatur und Volumenstrom.

5.5 Hausanlage

Die Hausanlage besteht aus dem Rohrleitungssystem ab Hauszentrale, den Heizflächen sowie den zugehörigen Absperr-, Regel- und Sicherheitseinrichtungen. Beim direkten Anschluss müssen die Hausanlagenteile den in der Hausstation gewählten Druck- und Temperaturbedingungen genügen.

5.6 Leistungs-, Liefer- und Eigentumsgrenze

Der vertraglichen Vereinbarung zur Folge können Modelle in unterschiedlicher Ausprägung und Mischung zum Tragen kommen.

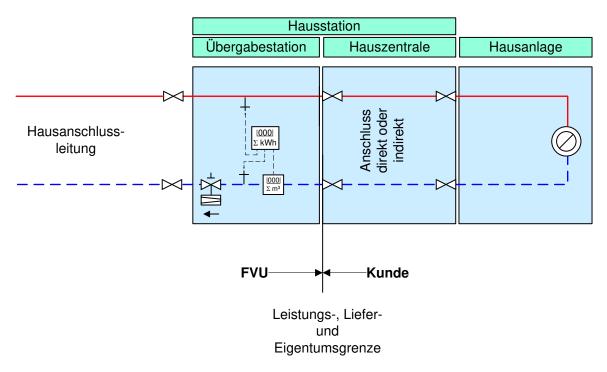


Abbildung 8: Leistungs-, Liefer- und Eigentumsgrenzen

Leistungsgrenze

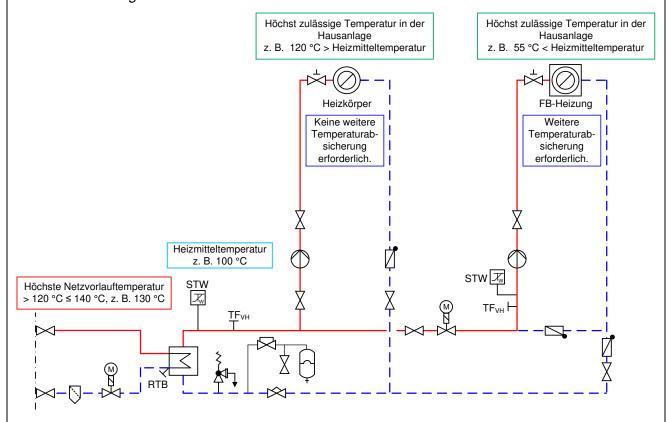
Die Leistungsgrenze definiert den Bauleistungsbereich von SWPz und kennzeichnet den physischen Übergang der SWPz-Anlage zur Kundenanlage. Die Leistungsgrenze kann über die Eigentumsgrenze von SWPz hinausgehen.

Liefergrenze

An der Liefergrenze sind die vertraglich vereinbarten Werte des Wärmeträgermediums hinsichtlich Druck, Temperatur, Differenzdruck und Volumenstrom einzuhalten.

Eigentumsgrenze

Die Eigentumsgrenze kennzeichnet den Teil der Anlagentechnik im Eigentumsbereich von SWPz. An der Schnittstelle Eigentumsgrenze findet der Gefahrenübergang von SWPz auf den Kunden statt. SWPz bleibt Eigentümer des Wärmeträgermediums. Andere Leistungsgrenzen sind möglich und individuell mit SWPz zu vereinbaren.


6 Hauszentrale Raumheizung

Die Hauszentrale ist das Bindeglied zwischen der Übergabestation und der Hausanlage. Sie dient der Anpassung der Wärmelieferung an die Hausanlage, z. B. hinsichtlich Druck, Temperatur und Volumenstrom.

Nachfolgende Erklärungen gelten für Hauszentralen, welche Heizflächen versorgen, die ihre Wärme durch Strahlung und/oder freie Konvektion abgeben.

① Der erforderliche Umfang der im Folgenden beschriebenen Temperaturabsicherungen wird von der höchsten Temperatur des Fernheizwassers und von der höchsten Temperatur, mit der die Hausanlage (theoretisch) beaufschlagt werden kann, bestimmt. Dabei muss ein Versagen der Temperaturregelung mit berücksichtigt werden. Die höchste Temperatur des Fernheizwassers ist in aller Regel die maximale Netzvorlauftemperatur $\theta_{VN max}$, entsprechend lauten auch die Bezeichnungen der Führungsgröße in den Überschriften der nachfolgenden Tabellen. Wird jedoch die Netzvorlauftemperatur vor den zu schützenden Anlagenteilen in der Hauszentrale reduziert und ist diese Temperaturabsenkung abgesichert, so kann – anstelle der höchsten Netzvorlauftemperatur – diese niedrigere Maximaltemperatur als Beurteilungskriterium für nachfolgende Verbraucherkreise für die Ausführung der Temperaturabsicherung herangezogen werden. Durch diese Vorgehensweise verringert sich u. U. der erforderliche Aufwand für die Temperaturabsicherung.

Das nachfolgend skizzierte Beispiel verdeutlicht die Aussage und stellt die Regelung des Wärmeübertragers mittels einer Volumenstromregelung mit Motorventil dar, alternative Regelungskonzepte sind ebenfalls möglich.

Beispiel für die Reduzierung der erforderlichen sicherheitstechnischen Ausrüstung durch Absenkung der Netzvorlauftemperatur

6.1 Direkter Anschluss ohne Beimischregelung

Ein direkter Anschluss ohne Beimischregelung ist im Bereich der SWPz nicht vorgesehen.

6.2 Direkter Anschluss mit Beimischregelung

Ein direkter Anschluss mit Beimischregelung ist im Bereich der SWPz nicht vorgesehen.

6.3 Indirekter Anschluss

Beim indirekten Anschluss sind Fernheizwasser-Volumenstrom und Heizmittel-Volumenstrom durch einen Wärmeübertrager hydraulisch voneinander entkoppelt.

Während der Heizmittel-Volumenstrom bei dieser Betriebsweise für alle Heizmittel-Temperaturen und Wärmeleistungen annähernd konstant bleibt, variiert der Fernheizwasser-Volumenstrom mit den Leistungs- und Temperaturänderungen.

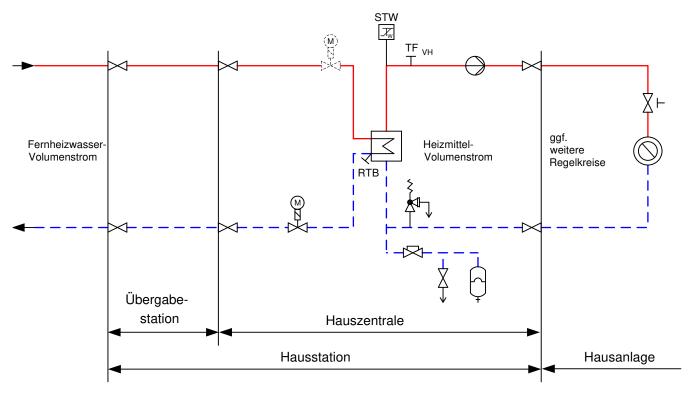


Abbildung 9: Hauszentrale-Raumheizung Prinzipschaltbild für den indirekten Anschluss

6.3.1 Temperaturregelung

Geregelt wird die Vorlauftemperatur des Heizmittels. Als Führungsgröße sollte nicht die momentane, sondern eine gemittelte Außentemperatur dienen.

Sind mehrere Verbrauchergruppen mit unterschiedlichen Anforderungen an einen Wärmeübertrager angeschlossen, so müssen diese einzeln mit einer nachgeschalteten Regelung versehen werden. Eine Bedarfsaufschaltung auf das primärseitig angeordnete Stellgerät der Heizmitteltemperaturregelung wird empfohlen.

Für primärseitig angeordnete Stellgeräte sind Durchgangsventile zu verwenden. Die Anordnung der Stellgeräte ist von den örtlichen Netzverhältnissen abhängig.

Verbindlich sind die dieser TAB-HW anhängenden Schaltschemata. Im Zweifelsfall ist Rücksprache mit SWPz zu nehmen.

Für sekundärseitig angeordnete Stellgeräte können Durchgangs- oder Dreiwegeventile verwendet werden.

Zur Dimensionierung der Stellgeräte (primär und sekundär) sind der jeweilige maximal erforderliche Volumenstrom und der am Einbauort zur Verfügung stehende Differenzdruck maßgebend. Dabei soll der Druckverlust des geöffneten Stellgerätes mindestens 50 % des jeweiligen minimalen Differenzdruckes betragen.

Für das primärseitige Stellgerät ist der minimale Netz-Differenzdruck ∆p_{min} gemäß Datenblatt im Anhang maßgebend. Schnell wirkende Stellgeräte sind nicht zulässig.

Die Stellantriebe (nach DIN 4747-1, gegebenenfalls mit Sicherheitsfunktion) müssen so bemessen sein, dass sie gegen den maximal auftretenden Netz-Differenzdruck Δp_{max} gemäß Datenblatt im Anhang maßgebend schließen können.

6.3.2 Temperaturabsicherung konstante Netzfahrweise

Eine Temperaturabsicherung nach DIN 4747-1 ist erforderlich, wenn die maximale Netzvorlauftemperatur größer ist als die maximal zulässige Temperatur in der Hausanlage. In diesem Fall müssen die Stellgeräte eine Sicherheitsfunktion (Notstellfunktion) nach DIN EN 14597 aufweisen.

Netzvorlauftemperatur θ_{VN max} ≤ 120 °C

Liegt die höchste Netzvorlauftemperatur oberhalb der zulässigen Temperatur der Hausanlage, ist ein typgeprüfter Schutztemperaturwächter (STW) vorzusehen. Der STW betätigt die Sicherheitsfunktion des Stellgerätes. Die Sicherheitsfunktion wird auch bei Ausfall der Hilfsenergie (Strom, Druckluft) ausgelöst.

höchste Netzvorlauf-			Fühler Vorlauftem- peraturregelung	Sicherheitstechni	Stellgerät Sicherheitsfunktion	
temperatur S		Hausanlage Raumheizung		typge	nach DIN EN 14597	
$\theta_{VN\;max}$	Anordn spiele	$ heta_{VHa\ zul}$	TF _H	TR _H 1)	STW _H 1)	SF
	le für		1*)	2*)	3*)	4*)
	Zeile		m			
< 100 °C	1	≥ Netzvorlauf- temperatur	Ja			
≤ 120 °C	2	< Netzvorlauf- temperatur	Ja		Ja (max θv _{Ha zul})	Ja

^{*)} Kennzeichnung in Anordnungsbeispielen

Tabelle 4: Sicherheitstechnische Ausrüstung zur Temperaturabsicherung von Fernwärmehausstationen – Raumheizung

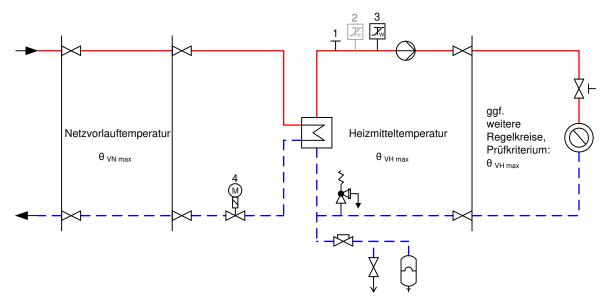


Abbildung zur Tabelle 4: Erforderliche sicherheitstechnische Ausrüstung nach Zeile 2; grau dargestellte Komponenten nicht erforderlich

¹⁾ Definition nach DIN EN 14597

Temperaturabsicherung gleitende / gleitend-konstante Netzfahrweise

Eine Temperaturabsicherung nach DIN 4747-1 ist erforderlich, wenn die maximale Netzvorlauftemperatur größer ist als die maximal zulässige Temperatur in der Hausanlage. In diesem Fall müssen die Stellgeräte eine Sicherheitsfunktion (Notstellfunktion) nach DIN EN 14597 aufweisen.

Netzvorlauftemperatur θ_{VN max} ≤ 120 °C

Liegt die höchste Netzvorlauftemperatur oberhalb der zulässigen Temperatur der Hausanlage, ist ein typgeprüfter Schutztemperaturwächter (STW) vorzusehen. Der STW betätigt die Sicherheitsfunktion des Stellgerätes. Die Sicherheitsfunktion wird auch bei Ausfall der Hilfsenergie (Strom, Druckluft) ausgelöst.

höchste Netzvorlauf- temperatur		höchstzulässige Temperatur in der	Fühler Vorlauftemperaturregelung Sicherheitstechnis		sche Ausrüstung	Stellgerät Sicherheitsfunktion
		Hausanlage Raumheizung		typge	nach DIN EN 14597	
$\theta_{VN\;max}$	für Anordr beispiele	$ heta_{ extsf{VHa}}$ zul	TFvH	TR _H 1)	STW _H 1)	SF
	Zeile f		1*)	2*)	3 ^{*)}	4*)
	Σe		mi	it und ohne Hilfsenerg	ie	
× 100 00	1	≥ Netzvorlauf- temperatur	Ja			
≤ 120 °C	2	< Netzvorlauf- temperatur	Ja		Ja ³⁾ (max θν _{Ha zul})	Ja ^{3) 4)}

- *) Kennzeichnung in Anordnungsbeispielen
- 1) Definition nach DIN EN 14597
- 3) Nicht erforderlich bei Anlagen, deren primär zur Verfügung gestellter Fernheizwasser-Volumenstrom 1 m³/h nicht überschreitet. Bei Fortfall des STW wird ein TR erforderlich. Flächenheizsysteme sind von der Erleichterung ausgenommen.
- 4) In Anlehnung an DIN EN 14597 erfüllt das Stellgerät die Forderung nach innerer Dichtheit (0,05% vom k_{vs}-Wert). Die Kennzeichnung erfolgt nach DIN EN 14597, jedoch ohne Angabe eines Konformitätszeichens von DIN-CERTCO und Registernummer.

Tabelle 5: Sicherheitstechnische Ausrüstung zur Temperaturabsicherung von Fernwärmehausstationen – Raumheizung

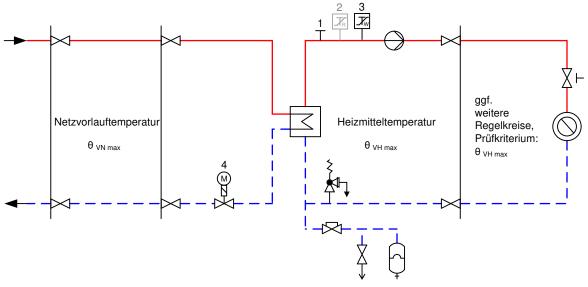


Abbildung zur Tabelle 5: Erforderliche sicherheitstechnische Ausrüstung nach Zeile 2; grau dargestellte Komponenten nicht erforderlich

6.3.3 Rücklauftemperaturbegrenzung

Die maximale Rücklauftemperatur darf den im Datenblatt im Anhang genannten Wert nicht übersteigen.

Die Einhaltung der Rücklauftemperatur ist durch den Aufbau und die Betriebsweise der Hausanlage sicherzustellen. Gegebenenfalls ist eine gleitende, der Außentemperatur angepasste Rücklauftemperaturbegrenzung (RTB) vorzusehen. SWPz entscheidet im Einzelfall, ob auf eine Begrenzungseinrichtung verzichtet werden kann.

Damit ein Ansprechen solcher Begrenzer bei Mehrkreisanlagen nicht zum Stillstand der Gesamtanlage führt, sind separate Begrenzungseinrichtungen, ggf. mit unterschiedlichen Sollwerten, für die jeweiligen Heizkreise erforderlich.

Die Rücklauftemperaturbegrenzung kann sowohl auf das Stellgerät der Vorlauftemperaturregelung wirken als auch durch ein separates Stellgerät erfolgen.

Der Fühler zur Erfassung der Rücklauftemperatur ist im oder möglichst dicht am Wärmeübertrager anzuordnen, um Temperaturänderungen schnell zu erfassen.

6.3.4 Volumenstrom

In der Hauszentrale werden sowohl der Fernheizwasser- als auch der Heizmittel-Volumenstrom je Regelkreis der Hausanlage dem Bedarf angepasst.

Der Fernheizwasser-Volumenstrom ist abhängig von der erforderlichen Leistung der Raumheizung und dem nutzbaren Wärmeinhalt des Fernheizwassers.

Der Heizmittel-Volumenstrom muss einstellbar und möglichst ablesbar sein. Hierzu sind Durchflussanzeiger mit Einstelldrossel oder Regulierventile mit Differenzdruckmessstutzen geeignet.

Die Umwälzpumpe je Regelkreis ist entsprechend den hydraulischen Belangen auszulegen.

6.3.5 Druckabsicherung

Die Druckabsicherung der Sekundärseite des Wärmeübertragers hat nach DIN 4747-1 zu erfolgen.

Membran-Sicherheitsventile (MSV) Ansprechdruck 2,5 oder 3 bar		Abblaseleistung für Wasser in l/h = Nennwär- meleistung in kW			≤ 350	≤ 900	≤ 1300	≤ 1800	≤ 2600
		Nennweite D	N d ₀	15	20	25	32	40	50
		Anschlussge für die Zuleit	,	G ½	G ¾	G 1	G 11/4	G 1 ½	G 2
			Anschlussgewinde*) d ₂ für die Ausblaseleitung		G 1	G 11/4	G 1 ½	G 2	G 2½
Art der Leitung		Längen	Anzahl Bögen	Min	Mindestdurchmesser und Mindestnennweiten DN				en DN
Zuleitung	d ₁₀	≤ 1 m	m ≤ 1		20	25	32	40	50
Ausblaseleitung	- d	≤ 2 m	≤ 2	20	25	32	40	50	65
ohne Entspannungs- topf (ET)	d ₂₀	≤ 4 m	≤ 3	25	32	40	50	65	80

^{*)} nach DIN EN ISO 228 Teil 1

Für Leistungen und Drücke, für die keine Membran-Sicherheitsventile verfügbar sind, sind federbelastete oder gewichtsbelastete SV mit entsprechendem Eignungsnachweis nach TRD 721 (siehe Abschnitt "Normen und technische Regeln") zu verwenden. Ihre Auslegung erfolgt nach TRD 721 und den Herstellerangaben. Zuleitungen und Ausblaseleitungen sind so zu dimensionieren, dass keine gefährliche Überschreitung des zulässigen Betriebsdruckes des Wärmeerzeugers (Wärmeübertrager) entstehen kann.

Tabelle 6: Auswahl von Membran-Sicherheitsventilen gegen Drucküberschreitung infolge Wasserausdehnung beim indirekten Anschluss

① Die bestehende Tabelle 4 aus der DIN 4747-1 (Stand November 2003) wurde sinngemäß erweitert. Membran-Sicherheitsventile Kennzeichnung H größer 3 bar, wie in der Norm beschrieben, sind zurzeit noch nicht verfügbar.

6.3.6 Werkstoffe und Verbindungselemente

Maßgebend für die Auswahl sind Systemdruck und -temperatur.

Für die von Fernheizwasser durchströmten Anlagenteile ist AGFW FW 531 zu beachten.

Nicht behandelt werden die statischen Aspekte der Rohrverlegung. Hierfür sind die einschlägigen Vorgaben des AGFW-Regelwerks sinngemäß anzuwenden.

① Neben einem pauschalen Verweis auf das Arbeitsblatt AGFW FW 531 besteht die Option, die beiden Übersichtstabellen der AGFW FW 531 für Eisenwerkstoffe bzw. für Werkstoffe aus Kupfer und Kupferlegierungen in den Anhang der zu TAB des jeweiligen FVU zu übernehmen. Es ist allerdings zu prüfen, ob alle dort aufgeführten Werkstoffe und Verbindungstechniken in den Anlagen des FVU Anwendung finden sollen.

Eisenwerkstoffe

Einzelheiten sind den Tabellen im Anhang zu entnehmen.

Werkstoffe aus Kupfer und Kupferlegierungen

Einzelheiten sind den Tabellen im Anhang zu entnehmen.

In den Tabellen im Anhang sind zudem die Anforderungen an Rohre, Form- und Verbindungsstücke aus Stahl und Kupfer, sowie Armaturen- und Pumpengehäuse aus Gusseisen/Stahlguss definiert. Darüber hinaus werden die Verbindungstechniken und Anforderungen an das Personal beschrieben.

Des Weiteren ist zu beachten:

- Die zur Verwendung kommenden Verbindungselemente und Dichtungen müssen für die Betriebsbedingungen bezüglich Druck, Temperatur und Wasserqualität (siehe AGFW FW 510) geeignet sein.
- Dichtmittel müssen den chemischen und physikalischen Parametern des Fernheizwassers genügen.
- VDI 2035-1 und -2 sind zu beachten.
- Es sind möglichst flachdichtende Verbindungen einzusetzen. Konische Verschraubungen sind nur bis 110 °C zugelassen.
- Für metallisch dichtende Schneidringverschraubungen muss die Eignung für Druck und Temperatur nachgewiesen werden.
- Andere Werkstoffe als die in den Tabellen genannten (z. B. Edelstahl), dürfen nur mit entsprechenden Nachweisen verwendet werden.
- Beim Einsatz von Pressfittings ist AGFW FW 524 zu beachten.
- Der Einsatz von Pressfittings in von Fernheizwasser durchflossenen Anlagenteilen ist nur nach Rücksprache mit SWPz zulässig.

Kunststoffe und Kunststoffverbundwerkstoffe

Für von Fernheizwasser durchflossene Anlagenteile sind Kunststoffe nicht zugelassen.

6.3.7 Sonstiges

Die Inbetriebsetzung der Hauszentrale darf nur in Anwesenheit von SWPz erfolgen.

Nicht zugelassen sind:

- hydraulische Kurzschlüsse zwischen Vor- und Rücklauf,
- automatische Be- und Entlüftungen,
- Gummikompensatoren.

6.3.8 Wärmeübertrager

Primärseitig müssen die Wärmeübertrager für den maximalen Druck gemäß Datenblatt im Anhang und die maximale Temperatur gemäß Datenblatt im Anhang des Fernwärmenetzes geeignet sein.

Sekundärseitig sind die maximalen Druck- und Temperaturverhältnisse der Hausanlage maßgebend.

Die thermische Auslegung der Wärmeübertrager hat so zu erfolgen, dass die maximale Wärmeleistung bei den vereinbarten Netztemperaturen gemäß Datenblatt im Anhang erreicht wird. Im Auslegungsfall darf die Differenz zwischen der primärseitigen und der sekundärseitigen Rücklauftemperatur nicht mehr als 2 K betragen.

Bei kombinierten Anlagen (RLH-Anlagen, Raumheizung, Trinkwassererwärmung) ist die Wärmeleistung aller Verbraucher bei der Dimensionierung des Wärmeübertragers anteilmäßig zu berücksichtigen.

7 Hauszentrale Raumluftheizung (RLH)

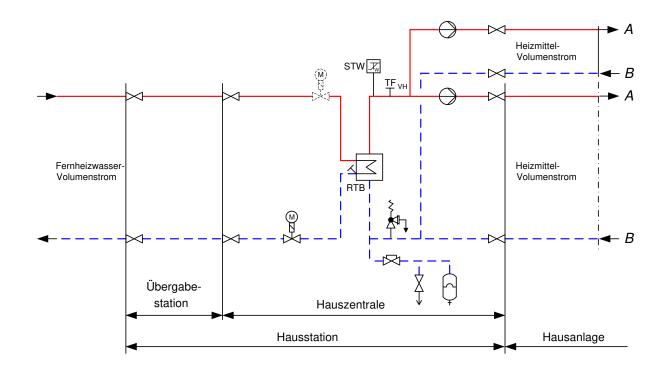
Nachfolgende Erklärungen gelten für Hauszentralen, welche Heizflächen versorgen, die ihre Wärme durch erzwungene Konvektion abgeben. Hierzu gehören z. B. Ventilatorkonvektoren, Decken- und Wandlufterhitzer sowie Luftheizregister in Klimaanlagen.

7.1 Direkter Anschluss ohne Beimischregelung

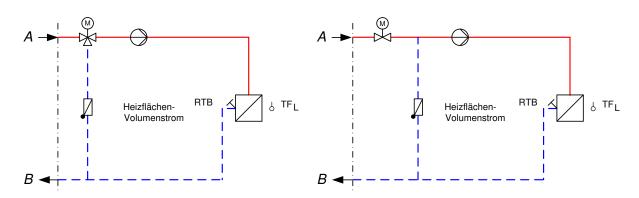
Ein direkten Anschluss ohne Beimischregelung ist im Bereich der SWPz nicht vorgesehen.

7.2 Direkter Anschluss mit Beimischregelung

Ein direkter Anschluss mit Beimischregelung ist im Bereich der SWPz nicht vorgesehen.


7.3 Indirekter Anschluss

Beim indirekten Anschluss sind Fernheizwasser- und Heizmittel-Volumenstrom durch einen Wärmeübertrager hydraulisch voneinander entkoppelt.


Während der Heizmittel-Volumenstrom bei dieser Betriebsweise für alle Heizmittel-Temperaturen annähernd konstant bleibt, variiert der Fernheizwasser-Volumenstrom mit den Leistungs- und Temperaturänderungen.

Die Temperaturregelung erfolgt in der Regel in der Hauszentrale-Raumluftheizung, sie ist bei RLH-Anlagen auch in der Hausanlage möglich.

Heizflächen-Volumenstrom = konstant

Heizflächen-Volumenstrom = variabel

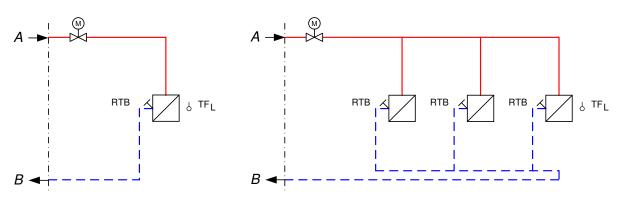


Abbildung 10: Hauszentrale-Raumluftheizung Prinzipschaltbilder für den indirekten Anschluss

7.3.1 Temperaturregelung

Geregelt wird die Vorlauftemperatur des Heizmittels.

Die Regelung der Lufttemperatur (z. B. Raum-, Zu- oder Abluft) erfolgt durch nachgeschaltete Regeleinrichtungen in der Hausanlage.

Sind mehrere Verbrauchergruppen mit unterschiedlichen Anforderungen an einen Wärmeübertrager angeschlossen, so müssen diese einzeln mit einer nachgeschalteten Regelung versehen werden. Eine Bedarfsaufschaltung auf das primärseitig angeordnete Stellgerät der Heizmitteltemperaturregelung wird empfohlen.

Für primärseitig angeordnete Stellgeräte sind Durchgangsventile zu verwenden. Die Anordnung der Stellgeräte ist von den örtlichen Netzverhältnissen abhängig. Verbindlich sind die dieser TAB-HW anhängenden Schaltschemata. Im Zweifelsfall ist Rücksprache mit SWPz zu nehmen.

Für sekundärseitig angeordnete Stellgeräte können Durchgangs- oder Dreiwegeventile verwendet werden.

Zur Dimensionierung der Stellgeräte (primär und sekundär) sind der jeweilige maximal erforderliche Volumenstrom und der am Einbauort zur Verfügung stehende Differenzdruck maßgebend. Dabei soll der Druckverlust des geöffneten Stellgerätes mindestens 50 % des minimalen Netz-Differenzdruckes (Δp_{min}) gemäß Datenblatt im Anhang betragen.

Für das primärseitige Stellgerät ist der minimale Netz-Differenzdruck (Δp_{min}) gemäß Datenblatt im Anhang maßgebend. Schnell wirkende Stellgeräte sind nicht zulässig.

Die Stellantriebe (nach DIN 4747-1, gegebenenfalls mit Sicherheitsfunktion) müssen so bemessen sein, dass sie gegen den maximalen Netz-Differenzdruck (Δp_{max}) gemäß Datenblatt im Anhang schließen können.

7.3.2 Temperaturabsicherung konstante Netzfahrweise

Eine Temperaturabsicherung nach DIN 4747-1 ist erforderlich, wenn die maximale Netzvorlauftemperatur größer ist als die maximal zulässige Vorlauftemperatur in der Hausanlage. In diesem Fall müssen die Stellgeräte eine Sicherheitsfunktion (Notstellfunktion) nach DIN EN 14597 aufweisen.

Netzvorlauftemperatur θ_{VN max} ≤ 120 °C

Es ist ein typgeprüfter Schutztemperaturwächter (STW) vorzusehen. Der STW betätigt die Sicherheitsfunktion des Stellgerätes. Die Sicherheitsfunktion wird auch bei Ausfall der Hilfsenergie (Strom, Druckluft) ausgelöst.

höchste Netzvorlauf-	Netzvorlauf- temperatur		Fühler Vorlauftem- peraturregelung	Sicherheitstechni	Stellgerät Sicherheitsfunktion	
temperatur				typge	nach DIN EN 14597	
$\theta_{VN\;max}$	Anordn spiele	$ heta_{ extsf{VHa}}$ zul	TF _{VH}	TR _H 1)	STW _H 1)	SF
	le für		1*)	2*)	3*)	4*)
	Zeile		m			
< 100 °C	1	≥ Netzvorlauf- temperatur	Ja			
≤ 120 °C	2	< Netzvorlauf- temperatur	Ja		Ja (max θν _{Ha zul})	Ja

^{*)} Kennzeichnung in Anordnungsbeispielen

Tabelle 7: Sicherheitstechnische Ausrüstung zur Temperaturabsicherung von Fernwärmehausstationen – Raumluftheizung

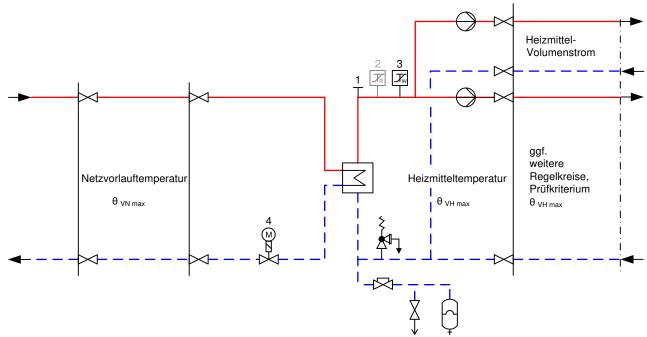


Abbildung zur Tabelle 7: Erforderliche sicherheitstechnische Ausrüstung nach Zeile 2; grau dargestellte Komponenten nicht erforderlich

¹⁾ Definition nach DIN EN 14597

Temperaturabsicherung gleitende / gleitend-konstante Netzfahrweise

Eine Temperaturabsicherung nach DIN 4747-1 ist erforderlich, wenn die maximale Netzvorlauftemperatur größer ist als die maximal zulässige Vorlauftemperatur in der Hausanlage. In diesem Fall müssen die Stellgeräte eine Sicherheitsfunktion (Notstellfunktion) nach DIN EN 14597 aufweisen.

Netzvorlauftemperatur θ_{VN max} ≤ 120 °C

Es ist ein typgeprüfter Schutztemperaturwächter (STW) vorzusehen. Der STW betätigt die Sicherheitsfunktion des Stellgerätes. Die Sicherheitsfunktion wird auch bei Ausfall der Fremdenergie (Strom, Druckluft) ausgelöst. Bei Anlagen, deren primär zur Verfügung gestellter Fernheizwasser-Volumenstrom 1 m³/h nicht überschreitet, kann auf den Schutztemperaturwächter und die Sicherheitsfunktion verzichtet werden. In diesem Fall wird ein typgeprüfter Temperaturregler (TR) erforderlich.

höchste Netzvorlauf-	. i höchstzulässige Temperatur in der		Fühler Vorlauftemperaturregelung Sicherheitstech		sche Ausrüstung	Stellgerät Sicherheitsfunktion
temperatur	nngs	Hausanlage Raumheizung		typge	nach DIN EN 14597	
$\theta_{VN\;max}$	Anordn spiele	$ heta_{ extsf{VHa}}$ zul	TFvH	TR _H 1)	STW _H 1)	SF
	le für		1*)	2*)	3 *)	4*)
	Zeile		mi			
< 100 °C	1	≥ Netzvorlauf- temperatur	Ja			
≤ 120 °C	2	< Netzvorlauf- temperatur	Ja		Ja ³⁾ (max θv _{Ha zul})	Ja ^{3) 4)}

^{*)} Kennzeichnung in Anordnungsbeispielen

Tabelle 8: Sicherheitstechnische Ausrüstung zur Temperaturabsicherung von Fernwärmehausstationen – Raumluftheizung

7.3.3 Rücklauftemperaturbegrenzung

Die maximale Rücklauftemperatur darf den Wert gemäß Datenblatt im Anhang nicht übersteigen.

Die Einhaltung der Rücklauftemperatur ist durch den Aufbau und die Betriebsweise der Hausanlage sicherzustellen. Gegebenenfalls ist eine Rücklauftemperaturbegrenzung vorzusehen. SWPz entscheidet, ob ggf. auf eine Begrenzungseinrichtung verzichtet werden kann.

Damit ein Ansprechen solcher Begrenzer bei Mehrkreisanlagen nicht zum Stillstand der Gesamtanlage führt, sind separate Begrenzungseinrichtungen, ggf. mit unterschiedlichen Sollwerten, für die jeweiligen Heizkreise erforderlich.

Die Rücklauftemperaturbegrenzung kann sowohl auf das Stellgerät der Vorlauftemperaturregelung wirken als auch durch ein separates Stellgerät erfolgen.

¹⁾ Definition nach DIN EN 14597

³⁾ Nicht erforderlich bei Anlagen, deren primär zur Verfügung gestellter Fernheizwasser-Volumenstrom 1 m³/h nicht überschreitet. Bei Fortfall des STW wird ein TR erforderlich.

⁴⁾ In Anlehnung an DIN EN 14597 erfüllt das Stellgerät die Forderung nach innerer Dichtheit (0,05% vom k_{vs}-Wert). Die Kennzeichnung erfolgt nach DIN EN 14597, jedoch ohne Angabe eines Konformitätszeichens von DIN-CERTCO und Registernummer.

Der Fühler zur Erfassung der Rücklauftemperatur ist im oder möglichst dicht am Wärmeübertrager anzuordnen, um Temperaturänderungen schnell zu erfassen.

7.3.4 Volumenstrom

In der Hauszentrale werden sowohl der Fernheizwasser- als auch der Heizmittel-Volumenstrom je Regelkreis der Hausanlage dem Bedarf angepasst.

Der Fernheizwasser-Volumenstrom ist abhängig von der erforderlichen Leistung der RLH-Anlage und dem nutzbaren Wärmeinhalt des Fernheizwassers.

Der Heizmittel-Volumenstrom muss einstellbar und möglichst ablesbar sein. Hierzu sind Durchflussanzeiger mit Einstelldrossel oder Regulierventile mit Differenzdruckmessstutzen geeignet.

Zur Dimensionierung des Stellgerätes ist der maximal erforderliche Fernheizwasser-Volumenstrom zu ermitteln. Hierzu sind in der Regel mehrere Vergleichsrechnungen durchzuführen.

① Diese Rechnungen sind erforderlich, da der maximale Fernheizwasser-Volumenstrom bei RLH-Anlagen nicht grundsätzlich bei niedrigster Außentemperatur benötigt wird. Es ist unbedingt der im Datenblatt angegebene Verlauf der Vorlauftemperatur des Fernheizwassers in Abhängigkeit von der Außentemperatur zu berücksichtigen.

So können unter Umständen verschiedenartige Betriebsweisen (Außen-, Misch-, Umluftbetrieb) und besondere Anforderungen an die Zuluftzustände zu Zeiten mit relativ hohen Außentemperaturen und entsprechend geringem Wärmeinhalt des Fernheizwassers ein Maximum an Fernheizwasser-Volumenstrom erfordern.

Die Umwälzpumpe für das Heizmittel je Regelkreis ist entsprechend den hydraulischen Belangen auszulegen.

7.3.5 Druckabsicherung

Die Druckabsicherung der Sekundärseite des Wärmeübertragers hat nach DIN 4747-1 zu erfolgen.

Membran-Sicherheitsventile (MSV) Ansprechdruck 2,5 oder 3 bar		Abblaseleistung für Wasser in I/h = Nennwär- meleistung in kW		≤ 100	≤ 350	≤ 900	≤ 1300	≤ 1800	≤ 2600
		Nennweite D	N d ₀	15	20	25	32	40	50
		Anschlussgewinde*) d ₁ für die Zuleitung		G ½	G ¾	G 1	G 11/4	G 1 ½	G 2
		Anschlussgewinde*) d ₂ für die Ausblaseleitung		G ¾	G 1	G 11/4	G 1 ½	G 2	G 2½
Art der Leitung		Längen	Anzahl Bögen	Mindestdurchmesser und Mindestnennweiten DN					
Zuleitung	d ₁₀	≤ 1 m	≤ 1	15	20	25	32	40	50
Ausblaseleitung ohne Entspannungs- topf (ET)	d ₂₀	≤ 2 m	≤ 2	20	25	32	40	50	65
		≤ 4 m	≤ 3	25	32	40	50	65	80

^{*)} nach DIN EN ISO 228 Teil 1

Für Leistungen und Drücke, für die keine Membran-Sicherheitsventile verfügbar sind, sind federbelastete oder gewichtsbelastete SV mit entsprechendem Eignungsnachweis nach TRD 721 (siehe Abschnitt "Normen und technische Regeln") zu verwenden. Ihre Auslegung erfolgt nach TRD 721 und den Herstellerangaben. Zuleitungen und Ausblaseleitungen sind so zu dimensionieren, dass keine gefährliche Überschreitung des zulässigen Betriebsdruckes des Wärmeerzeugers (Wärmeübertrager) entstehen kann.

Tabelle 9: Auswahl von Membran-Sicherheitsventilen gegen Drucküberschreitung infolge Wasserausdehnung beim indirekten Anschluss

① Die bestehende Tabelle 4 aus der DIN 4747-1 (Stand November 2003) wurde sinngemäß erweitert. Membran-Sicherheitsventile Kennzeichnung H größer 3 bar, wie in der Norm beschrieben, sind zurzeit noch nicht verfügbar.

7.3.6 Werkstoffe und Verbindungselemente

Maßgebend für die Auswahl sind Systemdruck und -temperatur.

Für die von Fernheizwasser durchströmten Anlagenteile ist AGFW FW 531 zu beachten.

Nicht behandelt werden die statischen Aspekte der Rohrverlegung. Hierfür sind die einschlägigen Vorgaben des AGFW-Regelwerks sinngemäß anzuwenden.

① Neben einem pauschalen Verweis auf das Arbeitsblatt AGFW FW 531 besteht die Option, die beiden Übersichtstabellen der AGFW FW 531 für Eisenwerkstoffe bzw. für Werkstoffe aus Kupfer und Kupferlegierungen in den Anhang der zu TAB des jeweiligen FVU zu übernehmen. Es ist allerdings zu prüfen, ob alle dort aufgeführten Werkstoffe und Verbindungstechniken in den Anlagen des FVU Anwendung finden sollen.

Eisenwerkstoffe

Einzelheiten sind den Tabellen im Anhang zu entnehmen.

Werkstoffe aus Kupfer und Kupferlegierungen

Einzelheiten sind den Tabellen im Anhang zu entnehmen.

In den Tabellen des Anhangs sind zudem die Anforderungen an Rohre, Form- und Verbindungsstücke aus Stahl und Kupfer, sowie Armaturen- und Pumpengehäuse aus Gusseisen/Stahlguss definiert. Darüber hinaus werden die Verbindungstechniken und Anforderungen an das Personal beschrieben.

Des Weiteren ist zu beachten:

- Die zur Verwendung kommenden Verbindungselemente und Dichtungen müssen für die Betriebsbedingungen bezüglich Druck, Temperatur und Wasserqualität (siehe AGFW FW 510) geeignet sein.
- Dichtmittel müssen den chemischen und physikalischen Parametern des Fernheizwassers genügen.
- VDI 2035-1 und -2 sind zu beachten.
- Es sind möglichst flachdichtende Verbindungen einzusetzen. Konische Verschraubungen sind nur bis 110 °C zugelassen.
- Für metallisch dichtende Schneidringverschraubungen muss die Eignung für Druck und Temperatur nachgewiesen werden.
- Andere Werkstoffe als die in den Tabellen genannten (z. B. Edelstahl), dürfen nur mit entsprechenden Nachweisen verwendet werden.
- Beim Einsatz von Pressfittings ist AGFW FW 524 zu beachten.
- Der Einsatz von Pressfittings in von Fernheizwasser durchflossenen Anlagenteilen ist nur nach Rücksprache mit SWPz zulässig.

Kunststoffe und Kunststoffverbundwerkstoffe

Für von Fernheizwasser durchflossene Anlagenteile sind Kunststoffe nicht zugelassen.

7.3.7 Sonstiges

Die Inbetriebsetzung der Hauszentrale darf nur in Anwesenheit von SWPz erfolgen.

Nicht zugelassen sind:

- hydraulische Kurzschlüsse zwischen Vor- und Rücklauf,
- automatische Be- und Entlüftungen,
- Gummikompensatoren.

Für Luftheizregister, die mit Außenluft beaufschlagt werden, ist eine Frostschutzschaltung vorzusehen.

Zusätzlich ist eine Anfahrschaltung zu empfehlen, wenn längere Leitungswege zwischen Hauszentrale und Heizregister unvermeidbar sind.

7.3.8 Wärmeübertrager

Primärseitig müssen die Wärmeübertrager für den maximalen Druck gemäß Datenblatt im Anhang und die maximale Temperatur gemäß Datenblatt im Anhang des Fernwärmenetzes geeignet sein.

Sekundärseitig sind die maximalen Druck- und Temperaturverhältnisse der Hausanlage maßgebend.

Die thermische Auslegung der Wärmeübertrager hat so zu erfolgen, dass die maximale Wärmeleistung bei den vereinbarten Netztemperaturen gemäß Datenblatt im Anhang erreicht wird. Im Auslegungsfall darf die Differenz zwischen der primärseitigen und der sekundärseitigen Rücklauftemperatur nicht mehr als 2 K betragen. Dieser Auslegungsfall ist bei RLH-Anlagen nicht zwangsläufig bei der tiefsten Außentemperatur gegeben (siehe Punkt 7.3.4).

Bei kombinierten Anlagen (RLH-Anlagen, Raumheizung, Trinkwassererwärmung) sind die Wärmeleistungen aller Verbraucher bei der Dimensionierung des Wärmeübertragers anteilmäßig zu berücksichtigen.

In Verbindung mit raumlufttechnischen Anlagen ist die Trinkwassererwärmung nur im Parallelbetrieb möglich (keine Vorrangschaltung).

8 Hauszentrale Trinkwassererwärmung

Nachfolgende Erklärungen gelten für Hauszentralen, die Hausanlagen mit Trinkwarmwasser versorgen.

Die Hauszentrale besteht aus den Heizflächen und den Behältern sowie den zugehörigen Regelund Steuereinrichtungen.

Folgende Systeme werden eingesetzt:

- Speicherladesystem,
- Durchflusswassererwärmer,
- Speichersystem mit eingebauter Heizfläche, diese jedoch nur nach vorheriger Absprache.

Die für die Ausführungsart der Trinkwassererwärmer maßgebliche Klassifizierung des Wärmeträgers wird durch DIN 1988 bestimmt und entspricht Kategorie 3 (wenig giftige Stoffe).

Der Trinkwassererwärmer muss mindestens den Anforderungen der Ausführungsart C (korrosionsbeständig, gesichert; Werkstoff Edelstahl oder Kupfer) entsprechen.

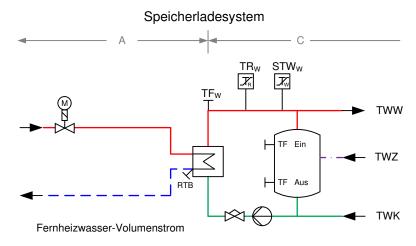
Die Trinkwassererwärmung kann sowohl im Vorrangbetrieb als auch im Parallelbetrieb zur Raumheizung erfolgen.

Bei Vorrangbetrieb wird die Heizlast für die Trinkwassererwärmung zu 100 % abgedeckt, die Leistung für die Raumheizung dafür ganz oder teilweise reduziert.

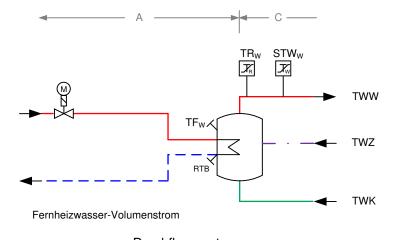
Ein Parallelbetrieb liegt vor, wenn sowohl die Heizlast der Raumheizung und ggf. der raumlufttechnischen Anlagen als auch die Heizlast der Trinkwassererwärmung gleichzeitig abgedeckt werden.

In Verbindung mit raumlufttechnischen Anlagen ist die Trinkwassererwärmung nur im Parallelbetrieb möglich (keine Vorrangschaltung).

① Die in DIN 4747-1 vorgegebene Temperaturabsicherung geht von einem Schutz der technischen Anlage aus (z. B. Beschichtung von Speichern nicht für Temperaturen von > 75 °C geeignet); unter dieser Voraussetzung sind die Vorgaben der Tabellen zur Temperaturabsicherung von Trinkwassererwärmungsanlagen formuliert. Sollen weitergehende Forderungen – z. B. zum Schutz von Personen – gewünscht oder erforderlich sein (Kindergärten), so sind diese auf der Warmwasserseite vorzusehen.



8.1 Direkter Anschluss ohne Beimischregelung


Beim direkten Anschluss ohne Beimischregelung erfolgt keine Anpassung der Fernheizwasser-Temperatur an die Erfordernisse der Trinkwassererwärmungsanlage.

Durch eine konstante oder gleitend-konstante Betriebsweise des Fernheizwassers wird ein ausreichendes Angebot der Fernheizwasser-Temperatur durch SWPz sichergestellt.

Anordnungsbeispiele:

Speicher mit eingebauter Heizfläche

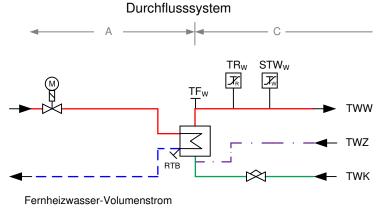


Abbildung 11: Hauszentrale-Trinkwassererwärmung
Prinzipschaltbilder für den direkten Anschluss ohne Beimischregelung

8.1.1 Temperaturregelung

Geregelt wird die Trinkwarmwassertemperatur auf einen konstanten Wert.

Die Temperaturmessstelle ist abhängig vom gewählten Trinkwassererwärmungssystem vorzusehen:

- beim Speicherladesystem am Austritt des Wärmeübertragers,
- beim Speichersystem im oberen Drittel des Speichers und gegebenenfalls oberhalb der Einbindung der Zirkulationsleitung,
- beim Durchflusswassererwärmer möglichst am Austritt in den Wärmeübertrager hineinragend.

Als Stellgeräte sind Durchgangsventile zu verwenden.

Die Stellgeräte sollten im Vorlauf angeordnet werden.

Zur Dimensionierung des Stellgerätes sind der maximal erforderliche Fernheizwasser-Volumenstrom und der am Einbauort zur Verfügung stehende Differenzdruck maßgebend. Dabei soll der Druckverlust des geöffneten Stellgerätes mindestens 50 % des minimalen Netz-Differenzdruckes (Δp_{min}) gemäß Datenblatt im Anhang betragen. Schnell wirkende Stellgeräte sind nicht zulässig.

Die Stellantriebe (nach DIN 4747-1, gegebenenfalls mit Sicherheitsfunktion) müssen so bemessen sein, dass sie gegen den maximalen Netz-Differenzdruck (Δp_{max}) gemäß Datenblatt im Anhang schließen können.

Bei Durchflusssystemen ist wegen der besonderen Anforderungen an die Regelgeräte und die Regelcharakteristik Rücksprache mit SWPz zu nehmen.

Anmerkung: Auf eine bildliche Darstellung mit Reglern ohne Hilfsenergie (RoH) wird verzichtet.

8.1.2 Temperaturabsicherung

Netzvorlauftemperatur θ_{VN max} ≤ 100 °C

höchste Netz- vorlauf- tempe-	nste höchste z- Heiz- auf- mittel- be- tempe-	Anordnungsbeispie	höchstzul. Temperatur in der Hausanlage	Heizmittel Fühler für Sicherheitstechnische Tempe-ra- Ausrüstung			Trinkwarmwasser Sicherheitstechnische Ausrüstung			Stellgerät Sicher- heits- funktion
ratur θνΝ max	ratur θ _{VH max}		Trinkwarm- wasser	tur-rege- lung	Tempe- ratur-reg- ler			Tempe- ratur- regler	Sicherheits- temperatur- wächter	nach DIN EN 14597
		Zeile für		ТFvн	TR _H 1)	STW _H 1)	TFw 5)	TRw 1)	STWw 1)	SF
A*)	B*)	Ze	C*)	1 *)	2 *)	3 *)	4 *)	5 *)	6 *)	7 *)
≤ 100 °C		1 2	≤ 75 °C	Vorrogolupo	ı für TME nio	ht vorbanden	Ja	Ja	Ja (max θ _{VHa zul})	Ja
			> 75 °C	vorregelung	jiurivve nic	ht vorhanden.	Ja			

^{*)} Kennzeichnung in Anordnungsbeispielen

Tabelle 10: Hauszentrale-Trinkwassererwärmung
Temperaturabsicherung beim direkten Anschluss ohne Beimischregelung

¹⁾ Definition nach DIN EN 14597

⁵⁾ Die Regelung der Trinkwarmwassertemperatur kann bereits durch die sicherheitstechnische Ausstattung gegeben sein.

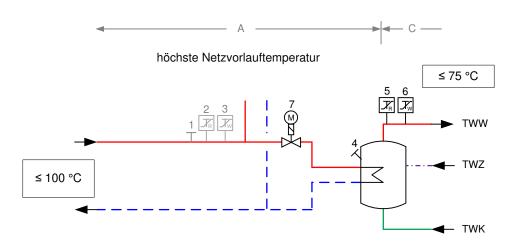


Abbildung zur Tabelle 10: Erforderliche sicherheitstechnische Ausrüstung nach Zeile 1; grau dargestellte Komponenten nicht erforderlich

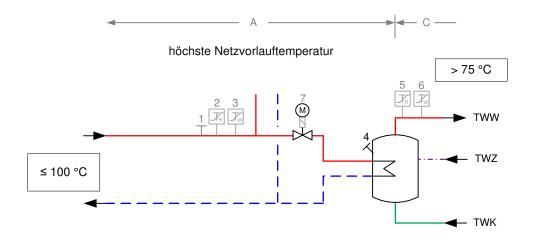


Abbildung zur Tabelle 10: Erforderliche sicherheitstechnische Ausrüstung nach Zeile 2; grau dargestellte Komponenten nicht erforderlich

Eine Temperaturabsicherung des Trinkwarmwassers ist nicht erforderlich, wenn die maximale Netzvorlauftemperatur $\leq 100~^{\circ}$ C und die maximal zulässige Temperatur in der Hausanlage Trinkwarmwasser > 75 $^{\circ}$ C beträgt.

Bei maximal zulässiger Temperatur der Trinkwassererwärmungsanlage ≤ 75 °C ist ein typgeprüfter Temperaturregler (TR) und ein typgeprüfter Schutztemperaturwächter (STW), eingestellt auf die maximal zulässige Hausanlagentemperatur erforderlich. Das Stellgerät muss eine Sicherheitsfunktion aufweisen, d. h. nach DIN EN 14597 geprüft sein.

Netzvorlauftemperatur 100 °C < θ_{VN max} ≤ 120 °C

höchste Netz- vorlauf- tempe-	höchste Heiz- mittel- tempe-	für Anordnungsbeispiele	höchstzul. Temperatur in der Hausanlage	Fühler für Tempe-ra-	Heizmittel Sicherheitstechnische Ausrüstung		Trinkwarmwasser Fühler für Tempe-ra- Sicherheitstechnische Ausrüstung			Stellgerät Sicher- heits- funktion
ratur θνν max	ratur θ _{VH max}		Trinkwarm- wasser θνHa zul	tur-rege- lung	Tempe- raturreg- ler	Sicherheits- temperatur- wächter	tur-rege- lung	Tempe- ratur- regler	Sicherheits- temperatur- wächter	nach DIN EN 14597
		Zeile f		TFvH	TR _H 1)	STW _H 1)	TFw 5)	TRw 1)	STWw 1)	SF
A *)	B *)	Ze	C *)	1 *)	2 *)	3 *)	4 *)	5 *)	6 *)	7 *)
> 100 °C		2	≤ 75 °C	Vorregelung für TWE nicht vorhanden.			Ja	Ja	Ja (max θ _{νHa zul})	Ja
≤ 120 °C			> 75 °C	vorregelun	y iui iVV⊏ iii0	om vornanden.	Ja	Ja		4)

- *) Kennzeichnung in Anordnungsbeispielen
- 1) Definition nach DIN EN 14597
- 4) In Anlehnung an DIN EN 14597 erfüllt das Stellgerät die Forderung nach innerer Dichtheit (0,05% vom k_{vs}-Wert). Die Kennzeichnung erfolgt nach DIN EN 14597, jedoch ohne Angabe eines Konformitätszeichens von DIN-CERTCO und Registernummer.
- 5) Die Regelung der Trinkwarmwassertemperatur kann bereits durch die sicherheitstechnische Ausstattung gegeben sein.

Tabelle 11: Hauszentrale-Trinkwassererwärmung
Temperaturabsicherung beim direkten Anschluss ohne Beimischregelung

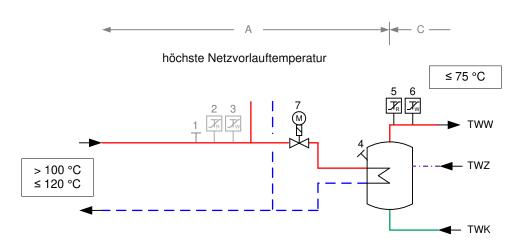


Abbildung zur Tabelle 11: Erforderliche sicherheitstechnische Ausrüstung nach Zeile 1; grau dargestellte Komponenten nicht erforderlich

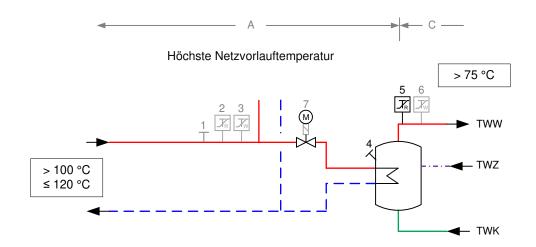


Abbildung zur Tabelle 11: Erforderliche sicherheitstechnische Ausrüstung nach Zeile 2; grau dargestellte Komponenten nicht erforderlich

Bei Netzvorlauftemperaturen 100 °C < $\theta_{VN\,max}$ ≤ 120 °C muss ein typgeprüfter Temperaturregler (TR) eingesetzt werden.

Bei maximal zulässiger Temperatur der Trinkwassererwärmungsanlage ≤ 75 °C ist ein typgeprüfter Temperaturregler (TR) und ein typgeprüfter Schutztemperaturwächter (STW), eingestellt auf die maximal zulässige Hausanlagentemperatur erforderlich. Das Stellgerät muss eine Sicherheitsfunktion aufweisen, d. h. nach DIN EN 14597 geprüft sein.

8.1.3 Rücklauftemperaturbegrenzung

Anmerkungen zur Hygiene

Die Vor- und Rücklauftemperaturen des Heizmittels, mit denen eine Trinkwassererwärmungsanlage – unabhängig von ihrer Beheizungsart – betrieben wird, sind nur in Grenzen frei wählbar. In erster Linie müssen sie den eigentlichen Zweck der Anlage, dem Erwärmen von Trinkwasser auf eine vom Verbraucher vorgegebenen Temperatur, ermöglichen. Neben dieser grundsätzlichen Anforderung an die Funktionstüchtigkeit haben die Heizmitteltemperaturen ebenfalls Auswirkungen auf:

- die Hygiene der Anlage (Legionellen, siehe auch Abschnitt 11 Hausanlage Trinkwassererwärmung).
- die Betriebssicherheit der Anlage (Verbrühungsgefahr),
- die Wirtschaftlichkeit der Anlage (umzuwälzender Volumenstrom) und
- die Langlebigkeit der Anlage (Ausfällen von Härtebildnern).

Die Heizmitteltemperaturen beeinflussen die genannten Punkte u. U. gegenteilig, so dass die gewählten Parameter häufig einen Kompromiss darstellen müssen.

Die Anforderungen an die hygienischen Verhältnisse werden in einem hohen Maß vom DVGW-Arbeitsblatt W 551 reglementiert. Nach dieser Technischen Regel muss bei einem bestimmungsgemäßen Betrieb das erwärmte Trinkwasser am Austritt des Erwärmers eine Temperatur von mindestens 60 °C aufweisen.

Im Aufheizbetrieb wird kaltes Trinkwasser durch das Heizmittel auf die gewünschte Temperatur erwärmt. Da bei diesem Vorgang das Heizmittel immer gegen kaltes Trinkwasser (mit beispielsweise 10 °C) abgekühlt wird, können gewünschte niedrige Rücklauftemperaturen sicher erreicht werden. Dazu ist lediglich eine korrekte Dimensionierung der wärmeübertragenden Flächen erforderlich.

Im Nachheizbetrieb beeinflusst die Forderung nach einer Trinkwarmwassertemperatur von mindestens 60 °C die erreichbare niedrige Rücklauftemperatur des Heizmittels aber negativ. Bei dieser Betriebsart wird bereits erwärmtes Trinkwasser, das durch Auskühlverluste des Speichers (und eventuell des Zirkulationssystems) auf eine Temperatur unterhalb der geforderten 60 °C abgekühlt ist, erneut aufgeheizt. Dabei stellt das abgekühlte Trinkwasser (mit beispielsweise 55 °C) die kalte Seite des Vorgangs der Wärmeübertragung dar und es ist folglich keine Rücklauftemperatur erreichbar, die unterhalb der Temperatur des wieder aufzuheizenden Trinkwassers liegt.

Sollen Trinkwassererwärmungsanlagen mit Einrichtungen zur Rücklauftemperaturbegrenzung (so genannte Rücklauftemperaturbegrenzer, RTB) versehen werden (z. B. um aus deren Ansprechen auf eine verkalkte Heizfläche zu schließen), so muss deren Sollwert mindestens 65 °C betragen.

Technische Einrichtungen zur Begrenzung der Rücklauftemperatur dürfen bei ihrem Ansprechen nicht zu einem Stillstand der gesamten Hausanlage führen. Dies wird durch separate Begrenzungseinrichtungen für die vorhandenen Hausanlagenbereiche (z. B. statische Heizung und Trinkwassererwärmungsanlage) erreicht; zentral wirkende Begrenzungseinrichtungen sind zu vermeiden.

Die maximale Rücklauftemperatur darf gemäß Datenblatt im Anhang nicht übersteigen.

Das DVGW-Arbeitsblatt W 551 gibt die Trinkwarmwassertemperatur am Austritt des Wassererwärmers von mindestens 60 °C vor. Die Temperatur des Zirkulationswassers darf um nicht mehr als 5 K unterhalb der Speicheraustrittstemperatur liegen.

Die Einhaltung der Rücklauftemperatur ist durch den Aufbau und die Betriebsweise der Trinkwassererwärmungsanlage sicherzustellen.

Für Raumheizung und Trinkwassererwärmung sind separate Begrenzungseinrichtungen erforderlich, um unterschiedlicher Sollwerte realisieren zu können.

Die Rücklauftemperaturbegrenzung kann sowohl auf das Stellgerät der Temperaturregelung wirken als auch durch ein separates Stellgerät erfolgen.

8.1.4 Volumenstrom

In der Hauszentrale werden sowohl der Fernheizwasser- als auch der Trinkwarmwasser-Volumenstrom je Regelkreis der Hausanlage dem Bedarf angepasst.

Der Fernheizwasser-Volumenstrom ist abhängig von der erforderlichen Leistung der Trinkwassererwärmer und dem nutzbaren Wärmeinhalt des Fernheizwassers bei der niedrigsten Netzvorlauftemperatur gemäß Datenblatt im Anhang

Die Volumenströme müssen einstellbar und möglichst ablesbar sein. Hierzu sind Durchflussanzeiger mit Einstelldrossel oder Regulierventile mit Differenzdruckmessstutzen geeignet.

Beim Speicherladesystem ist der Ladevolumenstrom auf die Auslegungsleistung des Wärmeübertragers bei der niedrigsten Heizmitteltemperatur (Netzvorlauftemperatur) unter Berücksichtigung der Ladezeit einzustellen und zu begrenzen.

Beim Durchflusswassererwärmer ist der Trinkwarmwasserdurchfluss auf die Auslegungsleistung des Wärmeübertragers bei der niedrigsten Heizmitteltemperatur (Netzvorlauftemperatur) einzustellen und zu begrenzen.

8.1.5 Druckabsicherung

Eine Druckabsicherung nach DIN 4747-1 ist erforderlich, wenn der maximale Netzdruck größer ist als der maximal zulässige Druck in der Trinkwassererwärmungsanlage.

Sofern die Druckabsicherung nicht in der Übergabestation erfolgen kann, ist diese in der Hauszentrale vorzunehmen.

Die Trinkwarmwasserseite ist nach DIN EN 806, DIN 4753 bzw. DIN 1988 abzusichern.

8.1.6 Werkstoffe und Verbindungselemente

Maßgebend für die Auswahl sind Systemdruck und -temperatur.

Für die von Fernheizwasser durchströmten Anlagenteile ist AGFW FW 531 zu beachten.

Nicht behandelt werden die statischen Aspekte der Rohrverlegung. Hierfür sind die einschlägigen Vorgaben des AGFW-Regelwerks sinngemäß anzuwenden.

① Neben einem pauschalen Verweis auf das Arbeitsblatt AGFW FW 531 besteht die Option, die beiden Übersichtstabellen der AGFW FW 531 für Eisenwerkstoffe bzw. für Werkstoffe aus Kupfer und Kupferlegierungen in den Anhang der zu TAB des jeweiligen FVU zu übernehmen. Es ist allerdings zu prüfen, ob alle dort aufgeführten Werkstoffe und Verbindungstechniken in den Anlagen des FVU Anwendung finden sollen.

Eisenwerkstoffe

Einzelheiten sind den Tabellen im Anhang zu entnehmen.

Werkstoffe aus Kupfer und Kupferlegierungen

Einzelheiten sind den Tabellen im Anhang zu entnehmen.

In den Tabellen des Anhangs sind zudem sind die Anforderungen an Rohre, Form- und Verbindungsstücke aus Stahl und Kupfer, sowie Armaturen- und Pumpengehäuse aus Gusseisen/Stahlguss definiert. Darüber hinaus werden die Verbindungstechniken und Anforderungen an das Personal beschrieben.

Des Weiteren ist zu beachten:

- Die zur Verwendung kommenden Verbindungselemente und Dichtungen müssen für die Betriebsbedingungen bezüglich Druck, Temperatur und Wasserqualität (siehe AGFW FW 510) geeignet sein.
- Dichtmittel müssen den chemischen und physikalischen Parametern des Fernheizwassers genügen.
- VDI 2035-1 und -2 sind zu beachten.
- Es sind möglichst flachdichtende Verbindungen einzusetzen. Konische Verschraubungen sind nur bis 110 °C zugelassen.
- Für metallisch dichtende Schneidringverschraubungen muss die Eignung für Druck und Temperatur nachgewiesen werden.
- Andere Werkstoffe als die in den Tabellen genannten (z. B. Edelstahl), dürfen nur mit entsprechenden Nachweisen verwendet werden.
- Beim Einsatz von Pressfittings ist AGFW FW 524 zu beachten.
- Der Einsatz von Pressfittings in von Fernheizwasser durchflossenen Anlagenteilen ist nur nach Rücksprache mit SWPz zulässig.

Kunststoffe und Kunststoffverbundwerkstoffe

Für von Fernheizwasser durchflossene Anlagenteile sind Kunststoffe nicht zugelassen.

8.1.7 Sonstiges

Die Inbetriebsetzung der Hauszentrale darf nur in Anwesenheit von SWPz erfolgen.

Nicht zugelassen sind:

- hydraulische Kurzschlüsse zwischen Vor- und Rücklauf,
- automatische Be- und Entlüftungen,
- Gummikompensatoren.

8.1.8 Wärmeübertrager

Primärseitig müssen die Wärmeübertrager für den maximalen Druck gemäß Datenblatt im Anhang und die maximale Temperatur gemäß Datenblatt im Anhang des Fernwärmenetzes geeignet sein.

Sekundärseitig sind die maximalen Druck- und Temperaturverhältnisse der Trinkwassererwärmungsanlage maßgebend.

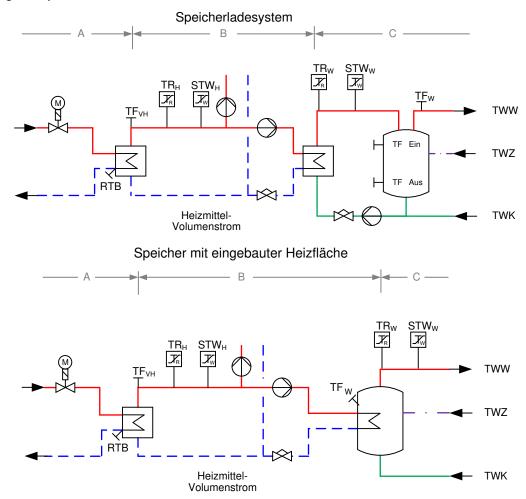
Die thermische Auslegung hat so zu erfolgen, dass bei der niedrigsten Vorlauftemperatur des Heizmittels sowie der höchst zulässigen Rücklauftemperatur gemäß Datenblatt im Anhang die gewünschte Trinkwarmwassertemperatur und die erforderliche Leistung erreicht werden.

Bei Wässern, die zu Kalkablagerungen neigen, sind Konstruktionen einzusetzen, die eine leichte Entkalkung ermöglichen.

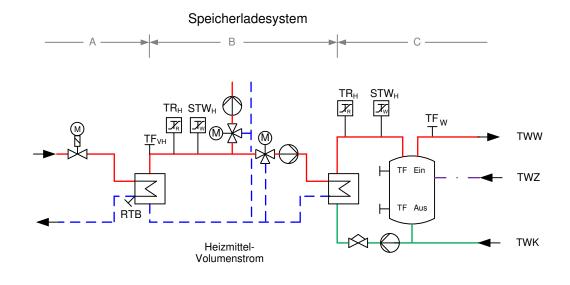
8.2 Direkter Anschluss mit Beimischregelung

Ein direkter Anschluss mit Beimischregelung ist im Bereich der SWPz nicht vorgesehen.

8.3 Indirekter Anschluss


Trinkwassererwärmung mit indirektem Anschluss sind grundsätzlich nur nach Rücksprache mit SWPz zu verwenden.

Beim indirekten Anschluss sind Fernheizwasser- und Heizmittel-Volumenstrom durch einen Wärmeübertrager hydraulisch voneinander entkoppelt.


Während der Heizmittel-Volumenstrom bei dieser Betriebsweise für alle Heizmittel-Temperaturen annähernd konstant bleibt, variiert der Fernheizwasser-Volumenstrom mit den Leistungs- und Temperaturänderungen.

Beim indirekten Anschluss sind bevorzugt Speicherladesysteme im Vorrangbetrieb einzusetzen.

Anordnungsbeispiele

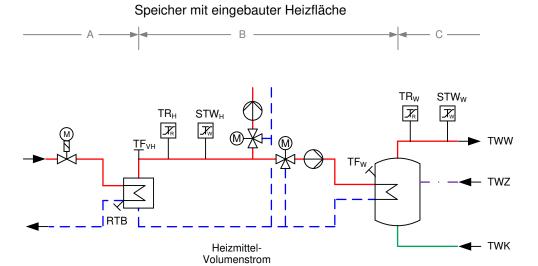


Abbildung 12: Hauszentrale-Trinkwassererwärmung Prinzipschaltbild für den indirekten Anschluss

8.3.1 Temperaturregelung

Geregelt wird die Trinkwarmwassertemperatur und/oder die Vorlauftemperatur des Heizmittels auf einen konstanten Wert.

Bei Regelung der Heizmitteltemperatur wird die Trinkwarmwassertemperatur durch Einstellen des Heizmittel- und Ladevolumenstromes erreicht.

Für primärseitig angeordnete Stellgeräte sind Durchgangsventile zu verwenden. Die Anordnung der Stellgeräte ist von den örtlichen Netzverhältnissen abhängig. Verbindlich sind die dieser TAB-HW anhängenden Schaltschemata. Im Zweifelsfall ist Rücksprache mit SWPz zu nehmen.

Für sekundärseitig angeordnete Stellgeräte können Durchgangs- oder Dreiwegeventile verwendet werden.

Zur Dimensionierung der Stellgeräte (primär und sekundär) sind der jeweilige maximal erforderliche Volumenstrom und der jeweilige am Einbauort zur Verfügung stehende Differenzdruck maßgebend. Dabei soll der Druckverlust des geöffneten Stellgerätes mindestens 50 % des minimalen Netz-Differenzdruckes (Δp_{min}) von gemäß Datenblatt im Anhang betragen.

Für das primärseitige Stellgerät ist der minimale Netz-Differenzdruck (Δp_{min}) gemäß Datenblatt im Anhang maßgebend. Schnell wirkende Stellgeräte sind nicht zulässig.

Die Stellantriebe (nach DIN 4747-1, gegebenenfalls mit Sicherheitsfunktion) müssen so bemessen sein, dass sie gegen den maximalen Netz-Differenzdruck (Δp_{max}) gemäß Datenblatt im Anhang schließen können.

8.3.2 Temperaturabsicherung

Netzvorlauftemperatur θ_{VN max} ≤ 100 °C

höchste	höchste Heiz-mit- tel- tempe-ra- tur	Anordnungsbeispiele	höchstzul. Temperatur in der Hausanlage Trinkwarm- wasser	Heizmittel				Trinkwarmwasser			
Netz- vorlauf- tempe- ratur				Fühler für Tempe- ratur- rege- lung	Sicherheitstechnische Ausrüstung		Stellgerät Sicher-	Fühler für	Sicherheitstechnische Ausrüstung		Stellgerät Sicher-
					Tempe-ra- tur- regler	Sicherheits- temperatur- wächter	heits- funktion nach DIN EN 14597	Tempe- ratur- rege- lung	Tempe- ratur- regler	Sicherheits- temperatur- wächter	heits-funk- tion nach DIN EN 14597
$\theta_{VN\;max}$	θvн max	fü	$\theta_{ m VHa\ zul}$								
		Zeile		TF _{VH}	TR _H 1)	STW _H 1)	SF	TF _w ⁵⁾	TR _W 1)	STW _W 1)	SF
A *)	в*)	.,	C *)	1 *)	2 *)	3 *)	4 *)	5 ^{*)}	6 ^{*)}	7 *)	8 ^{*)}
	≤ 75 °C	1	≤ 75 °C	Ja		Ja (max θ _{VH})	Ja	Ja			
≤ 100 °C	≤ 100 °C	2	≤ 75 °C	Ja				Ja	Ja	Ja (max θ _{VHa zul})	Ja
		3	> 75 °C	Ja				Ja			

- *) Kennzeichnung in Anordnungsbeispielen
- 1) Definition nach DIN EN 14597
- 5) Die Regelung der Trinkwassertemperatur kann bereits durch die sicherheitstechnische Ausstattung gegeben sein.

Tabelle 12: Hauszentrale-Trinkwassererwärmung
Temperaturabsicherung beim indirekten Anschluss

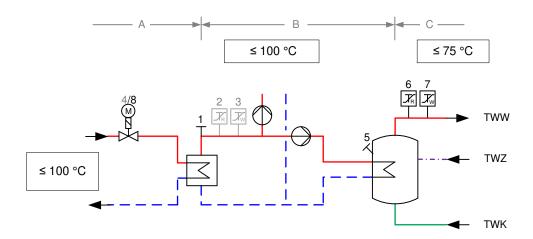


Abbildung zur Tabelle 12: Erforderliche sicherheitstechnische Ausrüstung nach Zeile 2; grau dargestellte Komponenten nicht erforderlich

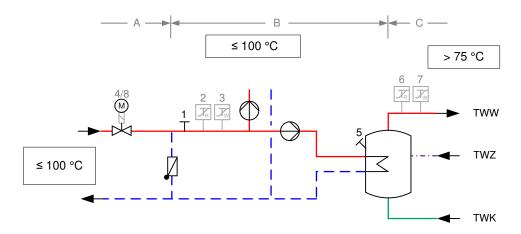


Abbildung zur Tabelle 12: Erforderliche sicherheitstechnische Ausrüstung nach Zeile 3; grau dargestellte Komponenten nicht erforderlich

Eine Temperaturabsicherung des Trinkwarmwassers ist nicht erforderlich, wenn die maximale Heizmitteltemperatur \leq 75 °C beträgt. Sie ist ebenfalls nicht erforderlich, wenn die maximale Heizmitteltemperatur \leq 100 °C und die maximal zulässige Temperatur in der Hausanlage Trinkwarmwasser > 75 °C beträgt.

Bei einer Heizmitteltemperatur > 75 °C und einer maximal zulässigen Temperatur der Trinkwassererwärmungsanlage von ≤ 75 °C ist ein typgeprüfter Temperaturregler (TR) und ein typgeprüfter Schutztemperaturwächter (STW), eingestellt auf die maximal zulässige Hausanlagentemperatur, erforderlich. Das Stellgerät muss eine Sicherheitsfunktion aufweisen, d. h. nach DIN EN 14597 geprüft sein.

Rücklauftemperaturbegrenzung

Anmerkungen zur Hygiene

Die Vor- und Rücklauftemperaturen des Heizmittels, mit denen eine Trinkwassererwärmungsanlage – unabhängig von ihrer Beheizungsart – betrieben wird, sind nur in Grenzen frei wählbar. In erster Linie müssen sie den eigentlichen Zweck der Anlage, dem Erwärmen von Trinkwasser auf eine vom Verbraucher vorgegebenen Temperatur, ermöglichen. Neben dieser grundsätzlichen Anforderung an die Funktionstüchtigkeit haben die Heizmitteltemperaturen ebenfalls Auswirkungen auf

- die Hygiene der Anlage (Legionellen, siehe auch Abschnitt 11 Hausanlage Trinkwassererwärmung),
- die Betriebssicherheit der Anlage (Verbrühungsgefahr),
- die Wirtschaftlichkeit der Anlage (umzuwälzender Volumenstrom) und
- die Langlebigkeit der Anlage (Ausfällen von Härtebildnern).

Die Heizmitteltemperaturen beeinflussen die genannten Punkte u. U. gegenteilig, so dass die gewählten Parameter häufig einen Kompromiss darstellen müssen.

Die Anforderungen an die hygienischen Verhältnisse werden in einem hohen Maß vom DVGW-Arbeitsblatt W 551 reglementiert. Nach dieser Technischen Regel muss bei einem bestimmungsgemäßen Betrieb das erwärmte Trinkwasser am Austritt des Erwärmers eine Temperatur von mindestens 60 °C aufweisen.

Im Aufheizbetrieb wird kaltes Trinkwasser durch das Heizmittel auf die gewünschte Temperatur erwärmt. Da bei diesem Vorgang das Heizmittel immer gegen kaltes Trinkwasser (mit beispielsweise 10 °C) abgekühlt wird, können gewünschte niedrige Rücklauftemperaturen sicher erreicht werden. Dazu ist lediglich eine korrekte Dimensionierung der wärmeübertragenden Flächen erforderlich.

Im Nachheizbetrieb beeinflusst die Forderung nach einer Trinkwarmwassertemperatur von mindestens 60 °C die erreichbare niedrige Rücklauftemperatur des Heizmittels aber negativ. Bei dieser Betriebsart wird bereits erwärmtes Trinkwasser, das durch Auskühlverluste des Speichers (und eventuell des Zirkulationssystems) auf eine Temperatur unterhalb der geforderten 60 °C abgekühlt ist, erneut aufgeheizt. Dabei stellt das abgekühlte Trinkwasser (mit beispielsweise 55 °C) die kalte Seite des Vorgangs der Wärmeübertragung dar und es ist folglich keine Rücklauftemperatur erreichbar, die unterhalb der Temperatur des wieder aufzuheizenden Trinkwassers liegt.

Sollen Trinkwassererwärmungsanlagen mit Einrichtungen zur Rücklauftemperaturbegrenzung (so genannte Rücklauftemperaturbegrenzer, RTB) versehen werden (z. B. um aus deren Ansprechen auf eine verkalkte Heizfläche zu schließen), so muss deren Sollwert mindestens 65 °C betragen.

Technische Einrichtungen zur Begrenzung der Rücklauftemperatur dürfen bei ihrem Ansprechen nicht zu einem Stillstand der gesamten Hausanlage führen. Dies wird durch separate Begrenzungseinrichtungen für die vorhandenen Hausanlagenbereiche (z. B. statische Heizung und Trinkwassererwärmungsanlage) erreicht; zentral wirkende Begrenzungseinrichtungen sind zu vermeiden.

Die maximale Rücklauftemperatur darf den Wert gemäß Datenblatt im Anhang nicht übersteigen.

Bei Trinkwassererwärmungsanlagen, die mit einer maximalen Rücklauftemperatur des Fernheizwassers von 50 °C betrieben werden, sind die DVGW-Arbeitsblätter W 551 und W 553 in besonderer Weise zu beachten.

Das DVGW-Arbeitsblatt W 551 gibt die Temperatur am Austritt des Trinkwassererwärmers mit 60 °C an. Die Temperatur des Zirkulationswassers darf am Eintritt in den Trinkwassererwärmer 55 °C nicht unterschreiten.

Die Einhaltung der Rücklauftemperatur ist durch den Aufbau und die Betriebsweise der Trinkwassererwärmungsanlage sicherzustellen.

Sind für Raumheizung und Trinkwassererwärmung Begrenzungseinrichtungen notwendig und unterschiedliche Rücklauftemperaturwerte nach Datenblatt einzuhalten, so ist für den ordnungsgemäßen Betrieb der Anlagen eine Umschaltmöglichkeit des Begrenzungswertes vorzusehen.

Die Rücklauftemperaturbegrenzung kann sowohl auf das Stellgerät der Temperaturregelung wirken als auch durch ein separates Stellgerät erfolgen.

8.3.3 Volumenstrom

In der Hauszentrale werden sowohl der Fernheizwasser- als auch der Heizmittel- und Trinkwarmwasservolumenstrom je Regelkreis der Hausanlage dem Bedarf angepasst.

Der Fernheizwasser-Volumenstrom ist abhängig von der erforderlichen Leistung der Trinkwassererwärmer und dem nutzbaren Wärmeinhalt des Fernheizwassers bei der niedrigsten Netzvorlauftemperatur gemäß Datenblatt im Anhang.

Die Volumenströme müssen einstellbar und möglichst ablesbar sein. Hierzu sind Durchflussanzeiger mit Einstelldrossel oder Regulierventile mit Differenzdruckmessstutzen geeignet.

Beim Speicherladesystem ist der Ladevolumenstrom auf die Auslegungsleistung des Wärmeübertragers bei der niedrigsten Heizmitteltemperatur (Netzvorlauftemperatur) unter Berücksichtigung der Ladezeit einzustellen und zu begrenzen.

Die Umwälzpumpe für das Heizmittel sowie die ggf. vorhandene Speicherladepumpe sind entsprechend den hydraulischen Belangen auszulegen.

8.3.4 Druckabsicherung

Durch die hydraulische Verbindung der Trinkwassererwärmungsanlage mit der Hausanlage-Raumheizung sind beide Anlagen für den gleichen Druck auszulegen und nach DIN 4747-1 abzusichern.

Die Trinkwarmwasserseite ist nach DIN 4753 bzw. DIN 1988 abzusichern.

8.3.5 Werkstoffe und Verbindungselemente

Maßgebend für die Auswahl sind Systemdruck und -temperatur.

Für die von Fernheizwasser durchströmten Anlagenteile ist AGFW FW 531 zu beachten.

Nicht behandelt werden die statischen Aspekte der Rohrverlegung. Hierfür sind die einschlägigen Vorgaben des AGFW-Regelwerks sinngemäß anzuwenden.

① Neben einem pauschalen Verweis auf das Arbeitsblatt AGFW FW 531 besteht die Option, die beiden Übersichtstabellen der AGFW FW 531 für Eisenwerkstoffe bzw. für Werkstoffe aus Kupfer und Kupferlegierungen in den Anhang der zu TAB des jeweiligen FVU zu übernehmen. Es ist allerdings zu prüfen, ob alle dort aufgeführten Werkstoffe und Verbindungstechniken in den Anlagen des FVU Anwendung finden sollen.

In den Tabellen des Anhangs sind die Anforderungen an Rohre, Form- und Verbindungsstücke aus Stahl und Kupfer, sowie Armaturen- und Pumpengehäuse aus Gusseisen/Stahlguss definiert. Dar- über hinaus werden die Verbindungstechniken und Anforderungen an das Personal beschrieben.

Des Weiteren ist zu beachten:

- Die zur Verwendung kommenden Verbindungselemente und Dichtungen müssen für die Betriebsbedingungen bezüglich Druck, Temperatur und Wasserqualität (siehe AGFW FW 510) geeignet sein.
- Dichtmittel müssen den chemischen und physikalischen Parametern des Fernheizwassers genügen.
- VDI 2035-1 und -2 sind zu beachten.
- Es sind möglichst flachdichtende Verbindungen einzusetzen. Konische Verschraubungen sind nur bis 110 °C zugelassen.
- Für metallisch dichtende Schneidringverschraubungen muss die Eignung für Druck und Temperatur nachgewiesen werden.
- Andere Werkstoffe als die in den Tabellen genannten (z. B. Edelstahl), dürfen nur mit entsprechenden Nachweisen verwendet werden.
- Beim Einsatz von Pressfittings ist AGFW FW 524 zu beachten.
- Der Einsatz von Pressfittings in von Fernheizwasser durchflossenen Anlagenteilen ist nur nach Rücksprache mit SWPz zulässig.

Kunststoffe und Kunststoffverbundwerkstoffe

- Für von Fernheizwasser durchflossene Anlagenteile sind Kunststoffe nicht zugelassen.

8.3.6 Sonstiges

- Die Auswahl der Werkstoffe für die Trinkwassererwärmungsanlage ist nach DIN 4753 und DIN 1988 sowie den einschlägigen DVGW-Vorschriften vorzunehmen. Es dürfen nur Materialien und Geräte verwendet werden, die entsprechend der anerkannten Regeln der Technik beschaffen sind. Das Zeichen einer anerkannten Prüfstelle (zum Beispiel DIN-DVGW, DVGW- oder GS-Zeichen) bekundet, dass diese Voraussetzungen erfüllt sind. Zur Vermeidung von Korrosionsschäden ist bei Mischinstallationen auf geeignete Werkstoffpaarungen zu achten.
- Die Inbetriebsetzung der Hauszentrale darf nur in Anwesenheit von SWPz erfolgen.
- Nicht zugelassen sind:
 - · hydraulische Kurzschlüsse zwischen Vor- und Rücklauf,
 - · automatische Be- und Entlüftungen,
 - · Gummikompensatoren.

8.3.7 Wärmeübertrager

Primärseitig müssen die Wärmeübertrager für den maximalen Druck gemäß Datenblatt im Anhang und die maximale Temperatur gemäß Datenblatt im Anhang des Fernwärmenetzes geeignet sein.

Sekundärseitig sind die maximalen Druck- und Temperaturverhältnisse der Trinkwassererwärmungsanlage maßgebend.

Die thermische Auslegung hat so zu erfolgen, dass bei der niedrigsten Vorlauftemperatur des Heizmittels sowie der höchst zulässigen Rücklauftemperatur gemäß Datenblatt im Anhang die gewünschte Trinkwarmwassertemperatur und die erforderliche Leistung erreicht werden.

Bei kombinierten Anlagen (RLH-Anlagen, Raumheizung, Trinkwassererwärmung) ist die Wärmeleistung aller Verbraucher bei der Dimensionierung des Wärmeübertragers anteilmäßig zu berücksichtigen. Bei Wässern, die zu Kalkablagerungen neigen, sind Konstruktionen einzusetzen, die eine leichte Entkalkung ermöglichen.

9 Hausanlage Raumheizung

Die Hausanlage Raumheizung besteht aus dem Rohrleitungssystem nach der Hauszentrale, den Heizflächen sowie den zugehörigen Absperr-, Regel-, Sicherheits- und Steuereinrichtungen.

9.1 Direkter Anschluss

Ein direkter Anschluss der Raumheizung ist im Bereich der SWPz nicht vorgesehen.

9.2 Indirekter Anschluss

Nachfolgende Erläuterungen gelten für Anlagen, bei denen das Heizmittel der Hausanlage durch einen oder mehrere Wärmeübertrager vom Fernwärmenetz getrennt ist.

Beim indirekten Anschluss unterliegen alle Anlagenteile den Betriebsbedingungen der Hausanlage. Sie müssen für die gewählten Druck- und Temperaturwerte geeignet sein.

9.2.1 Temperaturregelung

Alle Heizflächen sind nach Energieeinsparverordnung (EnEV) mit selbsttätig wirkenden Einrichtungen zur raumweisen Temperaturregelung auszurüsten, z.B. mit Thermostatventilen.

Es sind Thermostatventile nach Anforderungen AGFW FW 507 zu verwenden. Weitergehende Informationen können bei SWPz angefordert werden.

9.2.2 Hydraulischer Abgleich

Um eine einwandfreie Wärmeverteilung in der Hausanlage zu gewährleisten, ist ein hydraulischer Abgleich nach VOB Teil C / DIN 18380 vorzunehmen.

Es sind Stellgeräte mit Voreinstellmöglichkeit einzusetzen, z. B. Thermostatventile nach AGFW FW 507.

Die Voreinstellung sollte nach dem Spülen der Anlage erfolgen.

Stellgeräte ohne Voreinstellmöglichkeit (z. B. Anschluss von Altanlagen) sind gegen solche mit Voreinstellmöglichkeit auszutauschen. Alternativ können im Rücklauf des Heizkörpers für den jeweiligen Heizmittelvolumenstrom geeignete Verschraubungen mit reproduzierbarer Voreinstellmöglichkeit nachgerüstet werden.

Für die Dimensionierung und notwendigen Voreinstellungen der Stellgeräte sind der zugehörige Volumenstrom und Differenzdruck maßgebend.

Die Ventilautorität soll bei Thermostatventilen mindestens 30 %, bei allen anderen Regelventilen mindestens 50 % betragen.

Es ist sicherzustellen, dass der Differenzdruck am Stellgerät (z. B. Thermostatventil) den vom Hersteller für geräuscharmen Betrieb zugelassenen Wert nicht übersteigt.

Die Stellantriebe der Stellgeräte müssen gegen den anstehenden Differenzdruck schließen können.

Je nach anstehendem Differenzdruck kann abschnittsweise eine Differenzdruckbegrenzung (Strangregulierung) erforderlich werden. Eine strangweise Differenzdruckregelung ist zu bevorzugen.

9.2.3 Rohrleitungssysteme

Neuanlagen sind grundsätzlich im Zweileitersystem auszuführen.

Der Anschluss bestehender Einrohrsysteme ist in Abstimmung mit SWPz möglich.

Wärmedehnungskompensation und ggf. erforderliche Festpunktkonstruktionen sind unter Beachtung der Temperaturen in der Hausanlage auszulegen und so auszuführen, dass möglichst nur geringe Kräfte auf die Hausstation übertragen werden.

Für die Wärmedämmung von Rohrleitungen und Armaturen gelten die Dämmschichtdicken der Energieeinsparverordnung (EnEV).

Rohrleitungen, Armaturen und Pumpen sind so zu dimensionieren, dass die Anforderungen des Schallschutzes im Hochbau (DIN 4109) eingehalten werden.

Beim Einsatz von Kunststoffrohren in der Hausanlage müssen diese wegen möglicher Sauerstoffdiffusion über einen zusätzlichen Wärmeübertrager eingebunden sein.

9.2.4 Heizflächen

Die Wärmeleistung der Heizflächen ist nach DIN EN 442 in Abhängigkeit von den gewählten Heizmittel- und Raumtemperaturen zu bestimmen. Bei Neuanlagen muss die Rücklauftemperatur aus der maximal zulässigen Netz- Rücklauftemperatur gemäß Datenblatt im Anhang abzüglich der Grädigkeit des Wärmeübertragers ermittelt und in die Berechnung eingesetzt werden.

Einlagige Konvektoren oder Heizflächen mit ähnlicher Betriebscharakteristik sollten nicht eingesetzt werden.

• Einlagige Konvektoren sollten nicht angeschlossen werden. Infolge der großen Temperaturspreizung ergibt sich ein hohes Temperaturgefälle längs des Konvektors, sodass eine gleichmäßige Abschirmung kalter Flächen verhindert wird. Mehrlagige Konvektoren sind einsetzbar. Es ist jedoch zu beachten, dass Konvektoren in ihrer Leistungsabgabe bei sich ändernden Systemtemperaturen anders reagieren als andere Heizflächen.

Der Anschluss von Flächenheizsystemen ist SWPz bekannt zu geben.

Beim Einsatz von Heizflächen aus Aluminiumlegierungen darf aus Korrosionsschutzgründen der pH-Wert des Heizmittels 8,5 nicht überschreiten. Daher dürfen diese Anlagen nicht mit Fernheizwasser betrieben werden.

9.2.5 Armaturen/Druckhaltung

Es sind möglichst Armaturen mit flachdichtenden Verschraubungen oder Flansche in DIN-Baulängen einzusetzen.

Für die vom Heizmittel durchströmten Anlagenteile sind nicht zugelassen:

- Überströmventile zwischen Vor- und Rücklauf,
- Umschalt-, Bypass oder Mischventile, die Vorlaufwasser unausgekühlt in den Rücklauf abströmen lassen.
- Kurzschluss- oder Überströmleitungen zwischen Vor- und Rücklauf
- hvdraulische Weichen.

Hausanlagen sind mit Füll-, Entleerungs- und Entlüftungsarmaturen auszurüsten. Diese müssen durch Kappen oder Stopfen fest verschlossen sein.

In die Verteilungsstränge sollten im Vor- und Rücklauf Strangregulierventile mit Entleerung eingebaut werden, im Rücklauf mit reproduzierbarer Voreinstellung. Eine strangweise Differenzdruckregelung ist zu bevorzugen.

Ausdehnungsgefäße müssen so mit dem Wärmeübertrager verbunden sein, dass ein unbeabsichtigtes Absperren ausgeschlossen ist.

9.2.6 Werkstoffe und Verbindungselemente

Für die Auswahl der Werkstoffe, Verbindungselemente und Bauteile sind die Druck- und Temperaturverhältnisse sowie die Wasserqualität der Hausanlage maßgebend.

10 Hausanlage Raumluftheizung

Die Hausanlage Raumluftheizung besteht aus dem Rohrleitungssystem nach der Hauszentrale, den Heizregistern, ggf. dem Luftkanalsystem, sowie den zugehörigen Absperr-, Regel-, Sicherheits- und Steuereinrichtungen.

10.1 Direkter Anschluss

Ein direkter Anschluss von Raumluftanlagen ist im Bereich der SWPz nicht vorgesehen.

10.2 Indirekter Anschluss

Nachfolgende Erläuterungen gelten für Anlagen, bei denen das Heizmittel der Hausanlage durch einen oder mehrere Wärmeübertrager vom Fernwärmenetz getrennt ist.

Beim indirekten Anschluss unterliegen alle Anlagenteile den Betriebsbedingungen der Hausanlage. Sie müssen für die gewählten Druck- und Temperaturwerte geeignet sein.

10.2.1 Temperaturregelung

Alle Heizregister sind nach Energieeinsparverordnung (EnEV) mit einer Temperaturregelung (bestehend aus Stellantrieb und Stellgerät) auszurüsten. Es ist eine Rücklauftemperaturbegrenzung vorzusehen und auf eine Rücklauftemperatur gemäß Datenblatt im Anhang einzustellen. Diese darf auch im Frostschutzbetrieb nicht überschritten werden. Gegebenenfalls ist eine Anfahrschaltung vorzusehen.

10.2.2 Hydraulischer Abgleich

Um eine einwandfreie Wärmeverteilung in der Hausanlage zu gewährleisten, ist ein hydraulischer Abgleich nach VOB Teil C / DIN 18380 vorzunehmen.

Für die Dimensionierung und notwendige Voreinstellung der Stellgeräte sind der zugehörige Volumenstrom und Differenzdruck maßgebend.

Die Ventilautorität soll mindestens 50 % betragen.

Es ist sicherzustellen, dass der Differenzdruck am Stellgerät den vom Hersteller für geräuscharmen Betrieb zugelassenen Wert nicht übersteigt.

Die Stellantriebe der Stellgeräte müssen gegen den anstehenden Differenzdruck schließen können.

Je nach anstehendem Differenzdruck kann abschnittsweise eine Differenzdruckbegrenzung (Strangregulierung) erforderlich werden. Eine strangweise Differenzdruckregelung ist zu bevorzugen.

10.2.3 Rohrleitungssysteme

Wärmedehnungskompensation und ggf. erforderliche Festpunktkonstruktionen sind unter Beachtung der Temperaturen in der Hausanlage auszulegen und so auszuführen, dass möglichst nur geringe Kräfte auf die Hausstation übertragen werden.

Für die Wärmedämmung von Rohrleitungen und Armaturen gelten die Dämmschichtdicken der Energieeinsparverordnung.

Rohrleitungen, Armaturen und Pumpen sind so zu dimensionieren, dass die Anforderungen des Schallschutzes im Hochbau (DIN 4109) eingehalten werden.

Beim Einsatz von Kunststoffrohren in der Hausanlage müssen diese wegen möglicher Sauerstoffdiffusion über einen zusätzlichen Wärmeübertrager eingebunden sein.

10.2.4 Heizregister

Die Wärmeleistung der Heizregister ist in Abhängigkeit von den gewählten Heizmittel- und Raumtemperaturen zu bestimmen. Bei Neuanlagen darf höchstens die maximal zulässige Rücklauftemperatur gemäß Datenblatt im Anhang abzüglich der Grädigkeit des Wärmeübertragers in die Berechnung eingesetzt werden.

10.2.5 Armaturen/Druckhaltung

Es sind möglichst Armaturen mit flachdichtenden Verschraubungen oder Flansche in DIN-Baulängen einzusetzen.

Für die vom Heizmittel durchströmten Anlagenteile sind nicht zugelassen:

- Überströmventile zwischen Vor- und Rücklauf,
- Umschalt-, Bypass- oder Mischventile, die Vorlaufwasser unausgekühlt in den Rücklauf abströmen lassen,
- Kurzschluss oder Überströmleitungen zwischen Vor- und Rücklauf,
- hydraulische Weichen.

Hausanlagen sind mit Füll-, Entleerungs- und Entlüftungsarmaturen auszurüsten. Diese müssen durch Kappen oder Stopfen fest verschlossen sein.

In die Verteilungsstränge sollten im Vor- und Rücklauf Strangregulierventile mit Entleerung eingebaut werden, im Rücklauf mit reproduzierbarer Voreinstellung. Eine strangweise Differenzdruckregelung ist zu bevorzugen.

Ausdehnungsgefäße müssen so mit dem Wärmeübertrager verbunden sein, dass ein unbeabsichtigtes Absperren ausgeschlossen ist.

10.2.6 Werkstoffe und Verbindungselemente

Für die Auswahl der Werkstoffe, Verbindungselemente und Bauteile sind die Druck- und Temperaturverhältnisse sowie die Wasserqualität der Hausanlage maßgebend.

11 Hausanlage Trinkwassererwärmung

Die Hausanlage besteht aus Trinkwasserleitungen (kalt, warm und ggf. Zirkulation) sowie Zapfarmaturen und Sicherheitseinrichtungen.

Für die Planung, Errichtung, Inbetriebsetzung und Wartung sind die DIN 1988 sowie die DVGW-Arbeitsblätter W 551 und W 553 maßgebend.

Zur Vorhaltung der Temperatur an der Zapfstelle kann alternativ zu einer Zirkulationsleitung eine selbstregelnde Begleitheizung eingesetzt werden.

11.1 Werkstoffe und Verbindungselemente

Durch geeignete Wahl der Werkstoffe ist es möglich, Korrosion durch Elementbildung zu unterdrücken, die VDI-Richtlinie 2035 ist zu beachten.

Es dürfen nur Materialien verwendet werden, die den anerkannten Regeln der Technik entsprechen. Das Zeichen einer anerkannten Prüfstelle (zum Beispiel DIN-DVGW, DVGW- oder GS Zeichen) bekundet, dass diese Voraussetzungen erfüllt sind.

Installationen aus Kupferrohr können in weich- oder hartgelöteter Ausführung (DIN EN 1254, DIN EN 29453 und DVGW GW2) erfolgen.

Auf den Einsatz von verzinkten Rohrleitungen sollte vollständig verzichtet werden.

• Feuerverzinkter Stahl (auch "verzinkter Stahl") ist nicht bei allen Trinkwässern einsetzbar, sondern nur nach den Einsatzbereichen der technischen Regel DIN 50930-6. Im Warmwasserbereich sollte auf diesen Werkstoff ganz verzichtet werden, denn er ist dort nicht ausreichend beständig. Aus älteren Leitungen kann nach längerer Stillstandszeit "braunes" rosthaltiges Wasser austreten. Solcherart gefärbtes Wasser ist wegen Trübung und hohem Eisengehalt zwar nicht von einer Qualität, wie sie die Trinkwasserverordnung fordert; eine Gesundheitsgefährdung geht von ihm jedoch nicht aus.

Die Zinkschicht feuerverzinkter Rohrleitungen ist herstellungsbedingt mit Blei verunreinigt. Dadurch kann es zur Verunreinigung des Trinkwassers mit Blei kommen, auch wenn die Trinkwasser- Installation selbst keine Bleirohre enthält. Die Zinkschicht neuer verzinkter Stahlrohre sollte aber nicht mehr als die technisch unvermeidbaren 0,25 % Blei enthalten. Dieser Gehalt ist für die gesundheitliche Qualität von Trinkwasser, das mit einer solchen Zinkschicht in Kontakt steht, unbedenklich.

Quelle: Broschüre des Umweltbundesamtes, Ratgeber "Trink Was - Trinkwasser aus dem Hahn, Gesundheitliche Aspekte der Trinkwasser-Installation, Informationen und Tipps für Miethaus und Wohnungsbesitzer", 2007

Beim Einsatz von Kunststoffrohren und Pressfittingsystemen müssen die vorliegenden Parameter des Trinkwarmwassers beachtet werden.

11.2 Speicher

Um eine optimale Temperaturschichtung zu erreichen, sind Speicher in stehender Bauart zu bevorzugen.

Die Entnahme- und Zuführungsstutzen sind an den höchsten und tiefsten Punkten der Speicher zu installieren und mit Radialumlenkungen zu versehen.

Bei Speicher-Lade-Systemen mit mehreren Speichern sind diese in Reihe zu schalten.

11.3 Vermeidung von Legionellen

Legionellen sind Bakterien, die natürlicher Bestandteil des Trinkwassers sind und sich bei Wassertemperaturen zwischen 30 °C und 45 °C verstärkt vermehren. Werden diese Bakterien mit Wassernebel eingeatmet und gelangen so in die Lunge, können sie bei immungeschwächten Personen zu starker Gesundheitsgefährdung führen.

Die Vermehrung wird begünstigt durch ruhende Wässer sowie Ablagerungen. Zur Vermeidung der Legionellenvermehrung sind die DVGW-Arbeitsblätter W 551,W 553 und AGFW FW 526 zu beachten.

Folgende Hinweise sollten beachtet werden:

- Speicher mit Toträumen oder gering durchströmten Bereichen sind nicht einzusetzen.
- Speicher sind jährlich zu reinigen.
- Die Funktion der Zirkulation bzw. der elektrischen Begleitheizung ist ständig zu überwachen, um unzulässige Abkühlung auch in wenig genutzten Leitungen zu verhindern.
- Wenig genutzte Duschen sollten vor Benutzung mit maximal möglicher Zapftemperatur durchgespült werden.

11.4 Zirkulation

Die Einhaltung einer konstanten Trinkwarmwassertemperatur an den Zapfstellen kann durch ein Zirkulationssystem mit Umwälzpumpe oder eine elektrische Begleitheizung der Trinkwarmwasserleitung realisiert werden. Für die Auslegung des Zirkulationssystems sind die DIN 1988 und das DVGW-Arbeitsblatt W 553 maßgebend.

Die Einstellung des Zirkulationsvolumenstroms ist mittels Strangregulierventilen oder selbsttätig regelnden Zirkulationsregulierventilen durchzuführen. Die Einstellung ist zu dokumentieren. Eine Strangabsperrung ist separat vorzunehmen und darf die Einregulierung nicht verändern.

12 Solarthermische Anlagen

Ergänzend zur Fernwärmeversorgung können solarthermische Anlagen (siehe auch AGFW FW 522-1) einen Deckungsbeitrag zur Trinkwassererwärmung und/oder zur Raumheizung leisten. Reicht die von der solarthermischen Anlage zur Verfügung gestellte Wärmeleistung nicht aus, erfolgt die Nachheizung bis hin zur vollständigen Bedarfsdeckung durch Fernwärme.

Zur optimalen Nutzung der Gesamtanlage (Fernwärme und Solarthermie) sind Planung und Betrieb der beiden Wärmeerzeugungseinheiten aufeinander abzustimmen, das gilt auch für die sicherheitstechnische Ausrüstung.

Abschnitt 12 befasst sich mit den Besonderheiten der solarthermischen Anlage in Verbindung mit der Fernwärmeversorgung, alle weiteren Vorgaben dieser TAB-HW sind ebenfalls zu beachten.

12.1 Anschluss an die Hausstation

Die Herstellung des Anschlusses einer Solaranlage an die Fernwärme und die spätere Inbetriebsetzung der Anlage, sind vom Kunden unter Verwendung der dafür vorgesehenen Vordrucke zu beantragen. Über eine gemeinsame Inbetriebsetzung der Anlage entscheidet SWPz im Einzelfall.

Die Solaranlage ist Teil der Hauszentrale. Bindeglied zwischen Fernwärme- und Solaranlage ist ein Wärmespeicher (Trinkwarmwasserspeicher und/oder Pufferspeicher).

Der Wärmespeicher muss so konstruiert sein, dass einströmendes Wasser die Temperaturschichtung im Speicher nicht zerstört.

12.2 Vom Kunden einzureichende Unterlagen

Zusätzlich zu Abschnitt 2.3 sind folgende Unterlagen einzureichen:

- Anmeldung des Anschlusses der Solaranlage an die Hauszentrale,
- Datenblatt über die Auslegung der Solaranlage,
- Verwendungszweck(e) und anteilige solare Deckungsrate,
- Schaltbild der Solaranlage und
- Nachweis über die Einhaltung der maximal zulässigen Rücklauftemperatur gemäß Datenblatt im Anhang für alle auftretenden Betriebszustände

12.3 Sicherheitstechnische Anforderungen

Fernwärmespezifische Anlagenteile sind nach DIN 4747-1 und dieser TAB-HW auszuführen. Solarspezifische Anlagenteile sind nach den Normen DIN EN 12975 bis DIN EN 12977 auszuführen.

12.4 Unterstützung der Trinkwassererwärmung

Nachfolgende Erklärungen gelten für Hauszentralen, die solare Wärme zur Unterstützung der Trinkwassererwärmung einsetzen. Die Trinkwassererwärmungsanlage ist das zentrale Bindeglied zwischen dem solaren Wärmeerzeuger und der Hauszentrale. Die Regelung der Solaranlage kann über den Fernwärme- oder einen separaten Regler erfolgen. Im Zweifelsfall ist Rücksprache mit SWPz zu nehmen. Für den Anschluss an die Fernwärmehauszentrale gilt Abschnitt 6.

Der Anschluss der Solaranlage unterliegt den allgemein anerkannten Regeln der Technik.

In den folgenden Abschnitten werden Anlagenbeispiele für praxisbewährte Einbindungen in Fernwärmeanlagen dargestellt.

① Forderungen aus dem DVGW-Arbeitsblatt W 551 (Temperatur am Trinkwarmwasseraustritt > 60 °C und Aufheizen des bivalenten Speichers auf ≥ 60 °C einmal am Tag) beeinflussen die Solarausnutzung unter Umständen negativ, da die höchste Solarausbeute erreicht wird, wenn der Wärmeaustausch gegen kaltes Trinkwasser stattfindet. Dies ist bei einem durchwärmten Speicherinhalt nicht gegeben.

12.4.1 Solaranlage mit bivalent versorgtem Speicher-Trinkwassererwärmer

Ein bivalenter Speicher kann aus zwei Quellen beladen werden. Dazu hat er zwei innen liegende, hydraulisch nicht miteinander verbundene Wärmeübertrager, die übereinander angeordnet sind. Die Solaranlage wird an den unteren Wärmeübertrager angeschlossen, der Fernwärmeanschluss erfolgt am darüber liegenden Wärmeübertrager.

① Diese Art des Solarspeichers ist derzeit die Standardvariante bei Kleinanlagen. Dennoch ist sie die ungünstigste Variante für den Anschluss an Fernwärme, da die Temperaturschichtung am schlechtesten ist und somit höhere Rücklauftemperaturen zu erwarten sind. Solarspeicher mit außen liegendem Wärmeübertrager sind besser geeignet (siehe Abschnitt 12.4.2).

Bei bivalenten Speichern mit innen liegenden Wärmeübertragern stellt der Bereich der unteren Heizfläche eine Vorwärmstufe dar. Damit muss nach DVGW-Arbeitsblatt W 551 der gesamte Inhalt des Speichers einmal täglich auf ≥ 60 °C aufgeheizt werden.

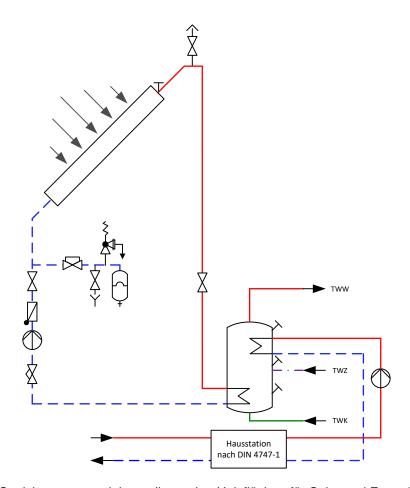


Abbildung 13: Speichersystem mit innen liegenden Heizflächen für Solar und Fernwärme

Geregelt wird die Trinkwarmwassertemperatur. Bei solarem Energieangebot wird diese Aufgabe vom Solarkreisregler übernommen. Reicht der solare Deckungsbeitrag nicht aus, wird mit Fernwärme nachgeheizt, bis die Sollwerttemperatur erreicht ist.

12.4.2 Solaranlage mit Speicher-Trinkwassererwärmer und außen liegendem Wärmeübertrager für die Nachheizung

Ein Speicher-Trinkwassererwärmer hat einen innen liegenden Wärmeübertrager für den Solarteil. Die Nachheizung mit Fernwärme erfolgt über einen externen Wärmeübertrager.

Bei solarbeheiztem Speicher mit innen liegendem Wärmeübertrager stellt der Bereich der integrierten Heizfläche eine Vorwärmstufe dar. Damit muss nach DVGW-Arbeitsblatt W 551 der gesamte Inhalt des Speichers einmal täglich auf ≥ 60 °C aufgeheizt werden.

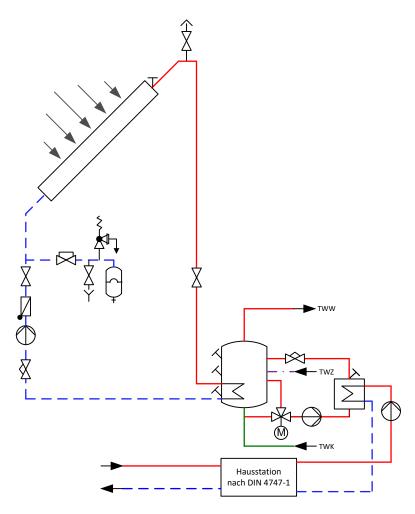


Abbildung 14: Trinkwassererwärmer mit außen liegendem Wärmeübertrager für die Nachheizung

Geregelt wird die Trinkwarmwassertemperatur. Bei solarem Energieangebot wird diese Aufgabe vom Solarkreisregler übernommen. Reicht der solare Deckungsbeitrag nicht aus, wird im Fernheizbetrieb, bis zum Erreichen der Sollwerttemperatur, nachgeheizt.

12.4.3 Solaranlage mit Pufferspeicher und Trinkwassererwärmer mit außen liegendem Wärmeübertrager für die Nachheizung

Der Pufferspeicher der Solaranlage und der Trinkwarmwasserspeicher sind hydraulisch nicht miteinander verbunden. Der Pufferspeicher versorgt den Trinkwarmwasserspeicher über einen integrierten Wärmeübertrager mit solarer Wärme. Die Nachheizung mittels Fernwärme erfolgt über einen externen Wärmeübertrager.

Bei solarbeheiztem Trinkwarmwasserspeicher mit innen liegendem Wärmeübertrager stellt der Bereich der internen Heizfläche eine Vorwärmstufe dar. Damit muss nach DVGW-Arbeitsblatt W 551der gesamte Inhalt des Speichers einmal täglich auf ≥ 60 °C aufgeheizt werden.

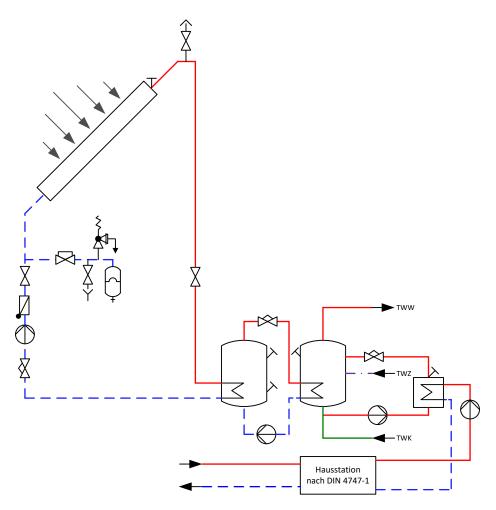


Abbildung 15: Solaranlage mit Pufferspeicher und Trinkwassererwärmer mit außen liegendem Wärmeübertrager für die Nachheizung

Geregelt wird die Trinkwarmwassertemperatur. Bei solarem Energieangebot wird diese Aufgabe vom Solarkreisregler übernommen. Reicht der solare Deckungsbeitrag nicht aus, wird im Fernheizbetrieb, bis zum Erreichen der Sollwerttemperatur, nachgeheizt.

12.5 Unterstützung von Trinkwassererwärmung und Raumheizung

Nachfolgende Erklärungen gelten für Hauszentralen, die solare Wärme zur Unterstützung der Trinkwassererwärmung und Raumheizung einsetzen. Das zentrale Bindeglied zwischen dem solaren Wärmeerzeuger und der Hausstation ist ein Pufferspeicher, der vom Heizmittel der Hausanlage durchströmt wird. Die Regelung der Solaranlage kann über den Fernwärme- oder einen separaten Regler erfolgen. Im Zweifelsfall ist Rücksprache mit SWPz zu nehmen. Für den Anschluss an die Fernwärmehauszentrale gilt Abschnitt 6

Der Anschluss der Solaranlage unterliegt den allgemein anerkannten Regeln der Technik.

Der Pufferspeicher wird über außen liegende Wärmeübertrager durch die Solaranlage und/oder Fernwärme beladen.

Geregelt wird die Heizmitteltemperatur im Pufferspeicher. Bei solarem Energieangebot wird diese Aufgabe vom Solarkreisregler übernommen. Reicht der solare Deckungsbeitrag nicht aus, wird mit Fernwärme nachgeheizt, bis die Sollwerttemperatur erreicht ist.

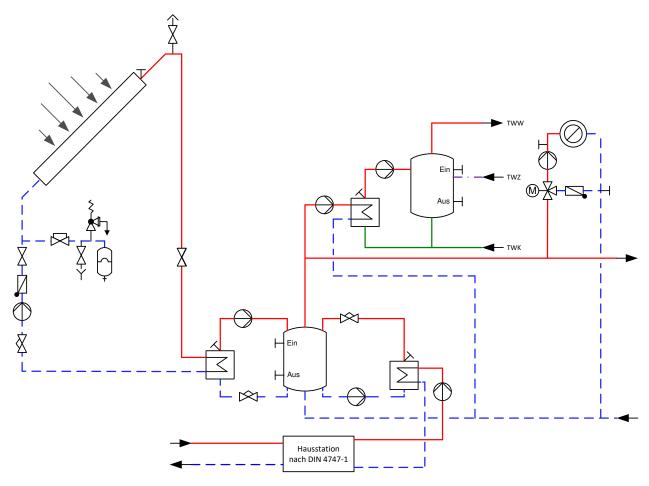


Abbildung 16: Solar unterstütztes Heizsystem, Pufferspeicher mit außen liegenden Wärmeübertragern für die Solaranlage und die Nachheizung mit Fernwärme

12.6 Rücklauftemperaturbegrenzung

Die maximale Rücklauftemperatur darf den Wert gemäß Datenblatt im Anhang nicht übersteigen.

Das DVGW-Arbeitsblatt W 551 gibt die Trinkwarmwassertemperatur am Austritt des Wassererwärmers von mindestens 60 °C vor. Die Temperatur des Zirkulationswassers darf um nicht mehr als 5 K unterhalb der Speicheraustrittstemperatur liegen.

Die Einhaltung der maximalen Rücklauftemperatur ist durch den Aufbau und die Betriebsweise der Trinkwassererwärmungsanlage sicherzustellen.

Die angegebene maximale bzw. vertraglich vereinbarte Rücklauftemperatur gemäß Datenblatt im Anhang für den Betrieb der Trinkwassererwärmungsanlage darf nicht überschritten werden.

Für Raumheizung und Trinkwassererwärmung sind separate Begrenzungseinrichtungen erforderlich, um unterschiedlicher Sollwerte realisieren zu können.

Die Rücklauftemperaturbegrenzung kann sowohl auf das Stellgerät der Temperaturregelung wirken als auch durch ein separates Stellgerät erfolgen.

① Anmerkungen zur Hygiene

Die Vor- und Rücklauftemperaturen des Heizmittels, mit denen eine Trinkwassererwärmungsanlage – unabhängig von ihrer Beheizungsart – betrieben wird, sind nur in Grenzen frei wählbar. In erster Linie müssen sie den eigentlichen Zweck der Anlage, dem Erwärmen von Trinkwasser auf eine vom Verbraucher vorgegebenen Temperatur, ermöglichen. Neben dieser grundsätzlichen Anforderung an die Funktionstüchtigkeit haben die Heizmitteltemperaturen ebenfalls Auswirkungen auf

- die Hygiene der Anlage (Legionellen, siehe auch Abschnitt 0 Hausanlage Trinkwassererwärmung),
- die Betriebssicherheit der Anlage (Verbrühungsgefahr),
- die Wirtschaftlichkeit der Anlage (umzuwälzender Volumenstrom) und
- die Langlebigkeit der Anlage (Ausfällen von Härtebildnern).

Die Heizmitteltemperaturen beeinflussen die genannten Punkte u. U. gegenteilig, so dass die gewählten Parameter häufig einen Kompromiss darstellen müssen. Die Anforderungen an die hygienischen Verhältnisse werden in einem hohen Maß vom DVGW-Arbeitsblatt W 551 reglementiert. Nach dieser Technischen Regel muss bei einem bestimmungsgemäßen Betrieb das erwärmte Trinkwasser am Austritt des Erwärmers eine Temperatur von mindestens 60 °C aufweisen.

Im Aufheizbetrieb wird kaltes Trinkwasser durch das Heizmittel auf die gewünschte Temperatur erwärmt. Da bei diesem Vorgang das Heizmittel immer gegen kaltes Trinkwasser (mit beispielsweise 10 °C) abgekühlt wird, können gewünschte niedrige Rücklauftemperaturen und eine gute solare Deckungsrate sicher erreicht werden. Dazu ist lediglich eine korrekte Dimensionierung der wärmeübertragenden Flächen erforderlich. Im Nachheizbetrieb beeinflusst die Forderung nach einer Trinkwarmwassertemperatur von mindestens 60 °C die erreichbare niedrige Rücklauftemperatur des Heizmittels aber negativ. Bei dieser Betriebsart wird bereits erwärmtes Trinkwasser, das durch Auskühlverluste des Speichers (und eventuell des Zirkulationssystems) auf eine Temperatur unterhalb der geforderten 60 °C abgekühlt ist, erneut aufgeheizt. Dabei stellt das abgekühlte Trinkwasser (mit beispielsweise 55 °C) die kalte Seite des Vorgangs der Wärmeübertragung dar und es ist folglich keine Rücklauftemperatur erreichbar, die unterhalb der Temperatur des wieder aufzuheizenden Trinkwassers liegt.

Sollen Trinkwassererwärmungsanlagen mit Einrichtungen zur Rücklauftemperaturbegrenzung (so genannte Rücklauftemperaturbegrenzer, RTB) versehen werden (z. B. um aus deren Ansprechen auf eine verkalkte Heizfläche zu schließen), so muss deren Sollwert mindestens 65 °C betragen.

Technische Einrichtungen zur Begrenzung der Rücklauftemperatur dürfen bei ihrem Ansprechen nicht zu einem Stillstand der gesamten Hausanlage führen. Dies wird durch separate Begrenzungseinrichtungen für die vorhandenen Hausanlagenbereiche (z. B. statische Heizung und Trinkwassererwärmungsanlage) erreicht; zentral wirkende Begrenzungseinrichtungen sind zu vermeiden.

13 Wohnungsstationen

Wohnungsstationen sind dezentrale hydraulische Schnittstellen, die von einer zentralen Fernwärme-Hausstation gespeist und in jeder Wohnung installiert werden. Sie ermöglichen eine individuelle Temperaturregelung für Raumwärme und Trinkwarmwasser. Für die Einzelabrechnung von Wärme und Trinkwasser sind Messstellen vorzusehen.

Projekte mit Wohnungsstationen sind grundsätzlich vor der Realisierung im Detail mit den SWPz abzustimmen!

13.1 Allgemeines

Die Temperatur- und Druckabsicherung der Wohnungsstation ist in der zentralen Fernwärme-Hausstation vorzunehmen. Zur Auslegung der Sicherheitstechnik sind die Inhalte Abschnitt 6 und die DIN 4747-1 maßgebend.

13.2 Anschlussarten

In Abhängigkeit der vorgeschalteten Fernwärme-Hausstation sind folgende Anschlussarten möglich:

- Raumheizung direkter Anschluss ohne Beimischregelung
- Raumheizung direkter Anschluss mit Beimischregelung
- Raumheizung indirekter Anschluss
- Trinkwassererwärmung direkter Anschluss ohne Beimischregelung
- Trinkwassererwärmung direkter Anschluss mit Beimischregelung
- Trinkwassererwärmung indirekter Anschluss

Die Ausführung der Wohnungsstationen dieser Anschlussarten kann den Abschnitten 6 und 0 entnommen werden.

Mindestanforderungen und Planungsgrundlagen der Wohnungsstationen sind in AGFW FW 520 Teil 1 und 2 beschrieben.

13.3 Warmhaltefunktion

Bei Wohnungsstationen mit Trinkwassererwärmung im Durchflusssystem ist es zwingend erforderlich, dass ganzjährig Heizmittel mit entsprechender Vorlauftemperatur am Wärmeübertrager zur Verfügung steht (Warmhaltefunktion). Um den hiermit verbundenen Wärmeverbrauch und den Anstieg der Rücklauftemperatur zu begrenzen, muss die Leitung für die Warmhaltefunktion in möglichst geringer Nennweite dimensioniert werden und der Durchfluss temperaturgeregelt sein.

13.4 Sonstiges

Die Inbetriebsetzung der zentralen Fernwärme-Hausstation darf nur in Anwesenheit von SWPz erfolgen.

14 Abkürzungen, Formelzeichen und verwendete Begriffe

Allgemeine Begriffe	Kurzbezeichnung/Index
Außentemperaturfühler	TFA
Energieeinsparverordnung	EnEV
Fernwärmeversorgungsunternehmen	FVU
Fühler Temperaturregelung Vorlauf Heizmittel	TFvh
Fühler Temperaturregelung Lüftung	TF∟
Hausanlage	На
Heizmittel	Н
Heizwasser	HW
Kaltwasser	TWK
Kunststoffmantelrohr	KMR
k _{vs} -Wert (auch Durchflusskoeffizient)	k _{vs}
Massenstrom	m
Membran-Sicherheitsventil	MSV
Nennweite	DN
Raumluftheizung	RLH
Rücklauftemperaturbegrenzung	RTB
Rücklauftemperaturbegrenzer	RTB
Schutztemperaturwächter	STW
Spezifische Wärmekapazität bei konstantem Druck	Cp
Sicherheitsabsperrventil	SAV
Sicherheitsfunktion	SF
Sicherheitsüberströmventil	SÜV
Technische Anschlussbedingungen	TAB
Temperaturregler	TR
Trinkwarmwasser	W
Trinkwarmwasser	TWW
Trinkwarmwasser-Zirkulation	TWZ
Trinkwasser kalt	TWK
Trinkwassererwärmer	TWE
Trinkwassererwärmung	TWE
Unternehmenskurzbezeichnung	UKB
Wärmeleistung	Q

Allgemeine Begriffe	Kurzbezeichnung/Index
Druck	
Differenzdruck	Δρ
Druck, höchst zulässig	p zul
Nenndruck	PN
Netzdruck	рм
Netzdruck, höchster	p _{max} (DIN 4747: p _{N max} !)
Netzdifferenzdruck, niedrigster	Δp_{min}
Netzdifferenzdruck, höchster	Δp_{max}
Temperatur	
Außentemperatur	θΑ
Hausanlagentemperatur, höchst zulässige	θvHa zul
Heizmittelvorlauftemperatur	θνн
Netzvorlauftemperatur	θνη
Netzvorlauftemperatur, höchste	θvn max
Netzvorlauftemperatur, niedrigste	θνη min
Temperaturspreizung, Temperaturdifferenz	Δθ
Vorlauftemperatur	θν
Vorlauftemperatur, höchste	θν max
Vorlauftemperatur, höchst zulässig	θv zul
Vorlauftemperatur, höchst zulässige in der Hausanlage	θvHa zul

15 Gesetzliche Vorgaben und Technische Regeln

Die folgenden zitierten Dokumente sind für die Anwendung dieses Arbeitsblattes erforderlich. Bei datierten Verweisungen gilt nur die in Bezug genommene Ausgabe. Bei undatierten Verweisungen gilt die letzte Ausgabe des in Bezug genommenen Dokuments (einschließlich aller Änderungen).

15.1 Verordnungen

AVBFernwärmeV

Energieeinsparverordnung: EnEV 2014, Zweite Verordnung zur Änderung der Energieeinsparverordnung, vom 18.11.2013

VOB Teil C / DIN 18380

15.2 Normen

15.2.1 DIN-Normen

DIN 1988-100

Technische Regeln für Trinkwasser-Installationen - Teil 100: Schutz des Trinkwassers, Erhaltung der Trinkwassergüte; Technische Regel des DVGW

DIN 1988-200

Technische Regeln für Trinkwasser-Installationen - Teil 200: Installation Typ A (geschlossenes System) – Planung, Bauteile, Apparate, Werkstoffe; Technische Regel des DVGW

DIN 1988-300

Technische Regeln für Trinkwasser-Installationen - Teil 300: Ermittlung der Rohrdurchmesser; Technische Regel des DVGW

DIN 1988-500

Technische Regeln für Trinkwasser-Installationen - Teil 500: Druckerhöhungsanlagen mit drehzahlgeregelten Pumpen; Technische Regel des DVGW

DIN 1988-600

Technische Regeln für Trinkwasser-Installationen - Teil 600: Trinkwasser-Installationen in Verbindung mit Feuerlösch- und Brandschutzanlagen; Technische Regel des DVGW

DIN 4109

Schallschutzes im Hochbau; Anforderungen und Nachweise

DIN 4747-1

Fernwärmeanlagen - Teil 1: Sicherheitstechnische Ausrüstung von Unterstationen, Hausstationen und Hausanlagen zum Anschluss an Heizwasser-Fernwärmenetze

DIN 4708

Zentrale Wassererwärmungsanlagen

DIN 4753

Trinkwassererwärmer, Trinkwassererwärmungsanlagen und Speicher-Trinkwassererwärme

DIN 18012

Haus-Anschlusseinrichtungen - Allgemeine Planungsgrundlagen

DIN V 18599

Produktabbildung - Energetische Bewertung von Gebäuden - Berechnung des Nutz-, End- und Primärenergiebedarfs für Heizung, Kühlung, Lüftung, Trinkwarmwasser und Beleuchtung - Beiblatt 1: Bedarfs-/Verbrauchsabgleich

DIN 50930-6

Korrosion der Metalle - Korrosion metallener Werkstoffe im Innern von Rohrleitungen, Behältern und Apparaten bei Korrosionsbelastung durch Wässer - Teil 6: Bewertungsverfahren und Anforderungen hinsichtlich der hygienischen Eignung in Kontakt mit Trinkwasser

DIN 57100

Errichten von Starkstromanlagen mit Nennspannungen bis 1000 V; Entwicklungsgang der Errichtungsbestimmungen

DIN CEN/TS 13388

Kupfer und Kupferlegierungen - Übersicht über Zusammensetzungen und Produkte

15.2.2 **EN-Normen**

DIN EN 442

Radiatoren und Konvektoren - Teil 1: Technische Spezifikationen und Anforderungen

DIN EN 448

Fernwärmerohre - Werkmäßig gedämmte Verbundmantelrohrsysteme für direkt erdverlegte Fernwärmenetze - Verbundformstücke, bestehend aus Stahl-Mediumrohr, Polyurethan-Wärmedämmung und Außenmantel aus Polyethylen

DIN EN 806

Technische Regeln für Trinkwasser-Installationen

DIN EN 1045

Hartlöten - Flussmittel zum Hartlöten - Einteilung und technische Lieferbedingungen

DIN EN 1092-1

Flansche und ihre Verbindungen - Runde Flansche für Rohre, Armaturen, Formstücke und Zubehörteile, nach PN bezeichnet - Teil 1: Stahlflansche

DIN EN 1092-3

Flansche und ihre Verbindungen - Runde Flansche für Rohre, Armaturen, Formstücke und Zubehörteile, nach PN bezeichnet - Teil 3: Flansche aus Kupferlegierunge

DIN EN 1254

Kupfer und Kupferlegierungen – Fittings

DIN EN 1515-1

Flansche und ihre Verbindungen - Schrauben und Muttern - Teil 1: Auswahl von Schrauben und Muttern

DIN EN 1561

Gießereiwesen - Gusseisen mit Lamellengraphit

DIN EN 1708-1

Schweißen - Verbindungselemente beim Schweißen von Stahl - Teil 1: Druckbeanspruchte Bauteile

DIN EN 1717

Schutz des Trinkwassers vor Verunreinigungen in Trinkwasser-Installationen und allgemeine Anforderungen an Sicherungseinrichtungen zur Verhütung von Trinkwasserverunreinigungen durch Rückfließen

DIN EN 1982

Kupfer und Kupferlegierungen - Blockmetalle und Gussstücke

DIN EN 10213

Stahlguss für Druckbehälter

DIN EN 10216-1

Nahtlose Stahlrohre für Druckbeanspruchungen - Technische Lieferbedingungen

Teil 1: Rohre aus unlegierten Stählen mit festgelegten Eigenschaften bei Raumtemperatur

DIN EN 10216-2

Nahtlose Stahlrohre für Druckbeanspruchungen - Technische Lieferbedingungen

Teil 2: Rohre aus unlegierten und legierten Stählen mit festgelegten Eigenschaften bei erhöhten Temperaturen

DIN EN 12163

Kupfer und Kupferlegierungen - Stangen zur allgemeinen Verwendung

DIN EN 12164

Kupfer und Kupferlegierungen - Stangen für die spanende Bearbeitung

DIN EN 12420

Kupfer- und Kupferlegierungen - Schmiedestücke

DIN EN 12516-3

Armaturen - Gehäusefestigkeit - Teil 3: Experimentelles Verfahren

DIN EN 12536

Schweißzusätze - Stäbe zum Gasschweißen von unlegierten und warmfesten Stählen - Einteilung

DIN EN 12831

Heizungsanlagen in Gebäuden - Verfahren zur Berechnung der Norm-Heizlast

DIN EN 12975

Thermische Solaranlagen und ihre Bauteile - Kollektoren

DIN EN 12977

Thermische Solaranlagen und ihre Bauteile - Kundenspezifisch gefertigte Anlagen

DIN FN 13941

Auslegung und Installation von werkmäßig gedämmten Verbundmantelrohren für die Fernwärme

DIN EN 14597

Temperaturregeleinrichtungen und Temperaturbegrenzer für wärmeerzeugende Anlagen

DIN EN 17672

Hartlöten - Lote

DIN EN 24373

Schweißzusätze - Massivdrähte und -stäbe zum Schmelzschweißen von Kupfer und Kupferlegierungen, Einteilung

DIN EN 29453

Technische Regel RAL-RG 641/3 Weichlote, Weichlötflussmittel und Weichlotpasten für Kupferrohr – Gütesicherung

DIN EN 29454-1

Flussmittel zum Weichlöten; Einteilung und Anforderungen; Teil 1: Einteilung, Kennzeichnung und Verpackung

DIN EN ISO 13585

Hartlöten - Prüfung von Hartlötern und Bedienern von Hartlöteinrichtungen

DIN EN ISO 14175

Schweißzusätze - Gase und Mischgase für das Lichtbogenschweißen und verwandte Prozesse

DIN EN ISO 228

Rohrgewinde für nicht im Gewinde dichtende Verbindungen - Teil 1: Maße, Toleranzen und Bezeichnung

DIN EN ISO 2560

Schweißzusätze - Umhüllte Stabelektroden zum Lichtbogenhandschweißen von unlegierten Stählen und Feinkornstählen - Einteilung

DIN EN ISO 5817

Schmelzschweißverbindungen an Stahl, Nickel, Titan und deren Legierungen (ohne Strahlschweißen) - Bewertungsgruppen von Unregelmäßigkeiten

DIN EN ISO 636

Schweißzusätze - Stäbe, Drähte und Schweißgut zum Wolfram-Inertgasschweißen von unlegierten Stählen und Feinkornstählen - Einteilung

DIN EN ISO 9606-1

Prüfung von Schweißern - Schmelzschweißen - Teil 1: Stähle

DIN EN ISO 9606-3

Prüfung von Schweißern - Schmelzschweißen - Teil 3: Kupfer und Kupferlegierungen

DIN EN ISO 9692-1

Arten der Schweißnahtvorbereitung

15.3 DVS-Richtlinien¹

DVS 1902-1

Schweißen in der Hausinstallation - Stahl - Anforderungen an Betrieb und Personal

DVS 1903-1

Löten in der Hausinstallation - Kupfer - Anforderungen an Betrieb und Personal

DVS 1903-2

Löten in der Hausinstallation - Kupfer - Rohre und Fittings; Lötverfahren; Befund von Lötnähten

15.3.1 VDE-Normen

DIN VDE 0100

Errichten von Niederspannungsanlagen - Verzeichnis der einschlägigen Normen und Übergangsfestlegungen

DIN VDE 0100-540

Errichten von Niederspannungsanlagen - Teil 5-54: Auswahl und Errichtung elektrischer Betriebsmittel - Erdungsanlagen und Schutzleiter

DVS – Deutscher Verband für Schweissen und verwandte Verfahren e.V., Düsseldorf, http://www.die-verbindungs-spezialisten.de

15.4 Technische Regeln des AGFW

AGFW FW 446

Schweißnähte an Fernwärmerohrleitungen aus Stahl - Schweißen, Prüfen und Bewerten

AGFW FW 507

Anforderungen an thermostatische Heizkörperventile ohne Fremdenergie für Heizwasser

AGFW FW 510

Anforderungen an das Kreislaufwasser von Industrie- und Fernwärmeheizanlagen sowie Hinweise für deren Betrieb

AGFW FW 520-1

Wohnungs-Übergabestationen für Heizwassernetze - Mindestanforderungen

AGFW FW 520-2

Wohnungs-Übergabestationen für Heizwassernetze - Planungsgrundlagen

AGFW FW 522-1

Einbindungsmöglichkeiten von solarthermischen Anlagen in Fernwärmehausstationen

AGFW FW 524

Anforderungen an Presssysteme

AGFW FW 526

Thermische Verminderung des Legionellen-wachstums - Umsetzung des DVGW-Arbeitsblattes W 551 in der Fernwärmeversorgung

AGFW FW 527

Druckabsicherung von Heizwasser-Fernwärmestationen zum indirekten Anschluss

AGFW FW 531

Anforderungen an Materialien und Verbindungstechniken für von Heizwasser durchströmten Anlageteilen in Hausstationen und Hausanlagen

15.5 Technische Regeln des DVGW

DVGW-Arbeitsblatt W 551

Trinkwassererwärmungs- und Trinkwasserleitungsanlagen - Technische Maßnahmen zur Verminderung des Legionellenwachstums - Planung, Errichtung, Betrieb und Sanierung von Trinkwasser-Installationen

DVGW-Arbeitsblatt W 553

Bemessung von Zirkulationssystemen in zentralen Trinkwassererwärmungsanlagen

DVGW GW 2

Verbinden von Kupfer- und innenverzinnten Kupferrohren für Gas- und Trinkwasser-Installationen innerhalb von Grundstücken und Gebäuden

15.6 VDI-Richtlinien²

VDI 2035 Blatt 1

Produktabbildung - Vermeidung von Schäden in Warmwasser-Heizungsanlagen - Steinbildung in Trinkwassererwärmungs- und Warmwasser-Heizungsanlagen

VDI 2035 Blatt 1 – Berichtigung

Vermeidung von Schäden in Warmwasser-Heizungsanlagen - Steinbildung in Trinkwassererwärmungs- und Warmwasser-Heizungsanlagen - Berichtigung zur Richtlinie VDI 2035 Blatt 1

VDI 2035 Blatt 2

Vermeidung von Schäden in Warmwasser-Heizungsanlagen - Wasserseitige Korrosion

VDI 2078

Berechnung der Kühllast klimatisierter Räume (VDI-Kühllastregeln)

15.7 Literatur

DKI-i158-09/2012

Die fachgerechte Kupferrohr-Installation / Deutsches Kupferinstitut

Weitere Vorgaben: Berufsgenossenschaftlichen Vorschriften (BGV)

TRD 7213

Sicherheitseinrichtungen gegen Drucküberschreitung - Sicherheitsventile - für Dampfkessel der Gruppe I

² VDI – Verein Deutscher Ingenieure, Düsseldorf, www.vdi.de

Die TRD 721 wurde zum 31.12.2012 außer Kraft gesetzt. Aus Ermangelung geeigneter Ersatzregelungen wird die TRD vom TÜV und anderen Prüforganisationen bis auf weiteres als Erkenntnisquelle genutzt. Diese Vorgehensweise ist vertraglich zu vereinbaren.

16 Symbole nach DIN 4747-1

Symbol	Bedeutung	Symbol	Bedeutung
\bowtie	Armatur allgemein	\mathbb{X}	Absperrschieber
	Absperrventil	\bowtie	Durchgangshahn
	TWE-Zapfstelle		Absperrklappe
	Armatur mit stetigem Stell- verhalten	\bowtie	Einstell/Drossel-Armatur
	Dreiwegeventil	Δ	Ventil in Eckform
$\stackrel{\perp}{\triangleright}\!$	Thermostatisches Heizkör- perventil		Druckminderventil mit SAV
P	Überströmventil (SÜV)	P _R	Differenzdruckregler im Rücklauf
\bigcirc	Schmutzfänger	•	Rückschlagventil
	Rückschlagklappe		Rückflussverhinderer
	Sicherheitsabsperrventil all- gemein	*	Sicherheitseckventil feder- belastet
→	Sicherheitsventil federbe- lastet	-1}↓	Volumenstromregelventil
(S) ***	Volumenstromregelventil mit elektrischem Stellantrieb	X □↓	Differenzdruckregler
P _R	Kombinierter Differenz- druck-/Volumenstromregler	P _R	Kombinierter Differenz- druck-/Volumenstromregler mit Elektroantrieb und Si- cherheitsfunktion nach DIN EN 14597

Symbol	Bedeutung	Symbol	Bedeutung
	Differenzdruck- und Volu- menstromregler mit Stellan- trieb		Volumenstromregler mit Elektrischem Stellantrieb und Sicherheitsfunktion
\square	Armatur in betriebsmäßig nicht absperrbarer Ausführung	OX	Armatur mit Antrieb ohne Hilfsenergie
	Armatur mit elektrischem Antrieb		Armatur mit elektrischem Antrieb und Sicherheits- funktion
	Temperaturregler mit hydraulischer Steuerung		Armatur mit Antrieb mit Membrane
*	Absperrarmatur mit Stellan- trieb durch Druck des Stof- fes gegen fest eingestellte Federkraft	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Entleerungsventil
	Trichter	Ŷ	Entlüftungsventil
	Strahlpumpe	\bigcirc	Flüssigkeitspumpe
\bigcirc	Kreiselpumpe	7-(1)	Strömungsschalter
	Wärmeverbraucher allgemein		Wärmeverbraucher Raum- heizkörper
	Wärmeverbraucher Fußbodenheizung		Behälter mit gewölbtem Boden, allgemein
+ P	Druckausdehnungsgefäß		Offenes Ausdehnungsgefäß

Symbol	Bedeutung	Symbol	Bedeutung
	Membranausdehnungs- gefäß		Entspannungstopf
	Speicherwassererwärmer mit Wärmeübertrager	- Ein - Aus	Speicherwassererwärmer ohne Wärmeübertrager
	Oberflächenwärmeüber-tra- ger ohne Kreuzung der Stoffflüsse		Lufterwärmer, Umformer
	Lufterwärmer, Luft/Dampf	#	Temperaturmessung allgemein
 	Temperaturregler	7 B	Sicherheitstemperaturbe- grenzer
Two	Sicherheitstemperatur- wächter		Temperaturregler/ Sicherheitstemperaturwäch- ter
F	Temperaturmessgerät	-+-	Temperaturfühler 1
	Temperaturfühler 2	<u> </u> T	Raumtemperaturaufnehmer allgemein
	Zeitschaltuhr	θ	Temperaturschalter
	Regler allgemein	*	Druckmessung allgemein
* 	Druckwächter	×	Druckmessgerät

Symbol	Bedeutung	Symbol	Bedeutung
X	Druckmessgerät mit Absperrung	*-	Druckmessdose
F T	Maximal-Druckbegrenzer		Minimal-Druckbegrenzer
[000] Σ kWh	Rechenwerk	000 Σ m³	Volumenmessteil
φ T _V T _R	Wärmezähler	ΣV	Volumenzähler
	Solarkollektor	Ŷ	Armatur mit Entlüftung
	Primär-Vorlauf		Primär-Rücklauf
	Sekundär-Vorlauf	_	Sekundär-Rücklauf
- · -	Warmwasser-Zirkulation		Warmwasser-Leitung
	Kaltwasser-Leitung		Wirklinie
 - - - - -	Eigentumsgrenze	▽	Grenzimpuls, schließt beim Erreichen des unteren Grenzwertes
+	Grenzimpuls, schließt beim Erreichen des oberen Grenzwertes		Grenzimpuls, öffnet beim Erreichen des unteren Grenzwertes
+	Grenzimpuls, öffnet beim Erreichen des oberen Grenzwertes	+	Hauptimpuls, öffnet bei Zu- nahme der Regelgröße

17 Übersicht Werkstoffe und Verbindungstechniken

n Unterlegscheibe nach EN ISO 7089/7090	Werkstoff					Entsprechend Schrauben,	Muttern Muttern			Ī								
rauben und Mutter nach EN 1515-1 Gewindebolzen ⁶⁾	Werkstoff	Sechskant -mutter	25CrMo4	(017	62	 		25CrMo4 (1.7218)			68							
Schrauben und Muttem nach EN 1515-1 Gewindebolzen	Wer	Sechskant- schraube / Gewinde- bolzen	250	(1:)	5.67)	8.87)		250			8.8							
Flansche nach EN 1092-1	Werkstoff-	gruppe		3E1 P280GH	(1.0426)			į	4E0 16Mo3	(1.5415)							bar)	
Maximal zulässiger Druck PS [bar] ¹⁾		TS ≤ 150°C	16	15,2	25	23,8		16			25		stur.				0 °C und 25	
Max zulässig PS [t		TS ≤ 100°C	16	16	25	22		16			52		ale Tempera			ape)	sturen (s 20	
Referenzwert für Dicke nach EN 1092-1 ⁵)		V _R [mm]	s 50	50 < v _R ≤ 150	> 50	50 < v _R ≤ 150	≥ 60	06 ≤ √v > 09	90 < v _R ≤ 150	\$ 60	60 < v _R ≤ 90	90 < v _R ≤ 150	¹⁾ In Anlehnung an EN 1092-2. Bei Zwischentemperaturen ist zu interpolieren. Der Tabellenwert gilt für die maximale Temperatur.			für die Zuordnung in den Normtabellen (Herstellerangabe)	Keine Einschränkungen bzgl. der in den Spalten 1 bis 3 angegebenen maximal zulässigen Drücke und Temperaturen (s 200 °C und 25 bar)	
Z.			4	2	1	52		16			25		Tabellenwe			n Normtabe	ulässigen C	
Pumpen, pfen		Stahl	P 235 GH							erpolieren. Der			uordnung in de	enen maximal z				
Gehäuse von Armaturen und Pumpen, Formstücke, Nippel, Stopfen	Werkstoff	Stahlguss				GP 240 GH nach EN 10213	(GS-C25) ³⁾	2					aturen ist zu inte		en Werkstoffes	nschen für die Z	bis 3 angegebe	
Gehäuse von Formstü		Grauguss / Sphäroguss			nach EN 1561 ²⁾	(GG 25) ³⁾				EN-GJS-400-	nach	EN 1563 (GGG 40.3) ³⁾	ei Zwischentemper	2) zulässig bei θ, _N ≤ 130°C; über 130°C ≤ DN 100	Bezeichnung des hier früher eingesetzten ähnlichen Werkstoffes Mindesthärte 200 HV	⁵⁾ Referenzwert für die obere Dickenangabe von Flanschen	⁶⁾ Keine Einschränkungen bzgl. der in den Spalten 1 bis 3 angegebenen maximal zulässigen Drücke und Temperaturen (s 200 °C und 25 bar)	
ulässiger ick arj ¹⁾		= 200°C		0,		no.		12,8			23		N 1092-2. B	130°C; übe	hier früher ei	le obere Dic	ngen bzgl. d	
Maximal zulässiger Druck PS [bar] ¹⁾		TS ≤ 120°C	q	o	;	0		16			25		ehnung an E	ig bei θ, N ≤	⁴ Bezeichnung des hier ⁴ Mindesthärte 200 HV	nzwert für d	Einschränku	
N.			9	٥	:	0		16			25		In Ani	2 zulāss	* Bezeic	5) Refere	6) Keine	

Tabelle 13: Gehäuse, Flansche, Schrauben, Gewindebolzen und Unterlegscheiben

		Ab Gebäudeeintritt bis Übergabestation		Ab Übergabestation und Hausanlage ¹⁾
DN ≤ 50 PS ≤ 16 bar TS ≤ 110 °C Projektklasse AA nach AGFW FW 446	10	DN ≤ 50 PS ≤ 26 bar TS ≤ 140 °C Trojektklasse AA mit Option A oder B nach AGFW FW 446	DN ≥ 65 Projektklasse A, B oder C nach AGFW FW 446	a) ≤ DN 125 oder≤4mm Wandstärke¹b) ≥ DN 150 oder>4mm Wandstärke keine Beschränkungen für PS und TS
Stahiteile S	Stahlrohre: Stahlformstücke: Stahlsorte: Prüfbescheinigung:	Nahtlose Stahlrohre nach EN 10216-2 Geschweißte Stahlrohre nach EN 10217-2, EN 10217-5 Nach EN 10253-2 P235GH; für andere Stahlsorten ist die Eignung nachzuweisen Abnahmeprützeugnis 3.1 nach EN 10204 Nach stätischen Erfordernissen	2, EN 10217-5 ignung nachzuweisen	
Qualifikationen S	Schweißunternehmen: Schweißer:	chmen: EN ISO 3834-4 (Projektklasse AA und A), EN ISO 3834-3 (Projektklasse B und C) Schweißer-Prüfungsbescheinigung nach EN ISO 9606-1	EN ISO 3834-3 (Projektklasse B und C) EN ISO 9606-1	
Schweißen	Nach WPS (weld	Nach WPS (welding procedure specificaton) und Schweißanweisung		
Schweißnahtbewertung: Ä	Äußere Unregelr Innere Unregelm	Äußere Unregelmäßigkeiten Bewertungsgruppe C nach EN ISO 5817 ²³ Innere Unregelmäßigkeiten Bewertungsgruppe B nach EN ISO 5817 ²³		
Schweißung: S	Stumpfschweißn Mit schrifflicher beim Schweißpro	Stumpfschweißnähte zur Verbindung von Rohren und Rohrleitungsbauteilen sind mindestens zweilagig auszuführen. Mit schriftlicher Zustimmung des Anlagenverantwortlichen kann in Gebäuden und Bauwerken beim Schweißprozess 311 sowie beim Schweißprozess 141 nach EN ISO 4063 bis zu Wanddicken von 3,6 mm auch einlagig geschweißt werden.	hren und Rohrleitungsbauteilen sind mindestens zweilagig auszuführen. antwortlichen kann in Gebäuden und Bauwerken beim Schweißprozess 311 sowi bis zu Wanddicken von 3,6 mm auch einlagig geschweißt werden.	e e
Projektklasse AA		Projektklasse AA mit Option A oder B	Projektklasse A, B oder C	Dichtheitsprüfung
Prüfumfang / Sichtprüfer: Verfahren VT 20% durch Schweißaufsicht nach DVS 1902-1 für jede Baustelle	ißaufsicht slle	Prüfumfang / Sichtprüfer: Option A: Verfahren VT 20% durch Schweißaufsicht nach DVS 1902-1 für jede Baustelle wenn	Schweißen, Prufen und Bewerten nach AGFW FW 446	nach VOB Teil C DIN 18380
		Absperrarmatur direkt nach dem Gebäudeeintritt		Informativ: Schweißprozesse
		Option B: Verfahren VT 80% durch eine Fachperson nach EN ISO 14731 oder EN ISO 9712 für jede Baustelle wenn keine Absperrarmatur direkt nach dem Gebäudeeintritt		 3 mm Wanddicke Schweißprozess 311³! nach links und rechts Schweißen (W) 4 mm Wanddicke Schweißprozess 311³! nach rechts Schweißen (rw) 2 6 mm Wanddicke Schweißorozess 111³
		Prűfung der Dokumentation der erstellten Leitung und ggf. Sichtprűfung durch den Anlagenverantwortlichen		Alle Wanddicken Schweißprozess 141 ³) Alle Wanddicken Kombinationsprozess 141 / 111 ³)
 Zusätzlich sind die Vorgaben der Technischen Anschlussbedingungen (T Die in EN ISO 5817 f ür Wanddicken > 3 mm angegebenen Grenzwerte f ür d Ordnungsnummer f ür Schweißprozess nach EN ISO 4063 Wenn die Wandst ärke > 3mm öder die Betriebstemperatur > 130 °C öder de 	der Technische licken > 3 mm ar Sprozess nach E <u>oder</u> die Betrieb	Zusätzlich sind die Vorgaben der Technischen Anschlussbedingungen (TAB) des Fernwärmeversorgungsunternehmens für Material und Qualifikation zu beachten Die in EN ISO 6817 für Wanddicken > 3 mm anzuwenden Die in EN ISO 6817 für Wanddicken > 3 mm anzuwenden Ordnungsnummer für Schweißprozess nach EN ISO 4063 Wenn die Wandstärke > 3mm <u>oder</u> die Betriebstemperatur > 130 °C <u>oder</u> der Nenndruck PN > 16 bar ist, sind die Schweißarbeiten analog AGFW FW 446 auszuführen	AB) des Fernwärmeversorgungsunternehmens für Material und Qualifikation zu beachten ile Unregelmäßigkeiten sind nach AGFW FW 446 auch für Wanddicken ≤3 mm anzuwen. er Nenndruck PN > 16 bar ist, sind die Schweißarbeiten analog AGFW FW 446 auszuführe	beachten Inzuwenden Iszuführen

Tabelle 14: Stahlrohre und Stahlformstücke

Maximal zulä	ssiger Druck		Kupferlegierungen	
PS [bar]	bar]	Gehäuse von Armaturen und Pumpen, Formstücke, Nippel, Stopfen	ren und Pumpen, pel, Stopfen	Überwurfmuttern
TS ≤ 120°C	TS = 180°C			
Ø	જ	33000 3000 3000 30 60	nach EN 12420 (Schmiede) nach EN 1982 nach EN 1982 nach DIN CEN TS 13388	CuZn39Pb3 ²⁾ bzw. CW614N und CuZn39Pb0.5 ²⁾ bzw. CW610N und CuZn40Pb2 ²⁾ bzw. CW617N und CuZn38Pb2 ²⁾ bzw. CW608N und
10	ω	CuZn36Pb2 ²¹ bzw. CuZn39Pb ²¹ oder CuZn40Pb ²¹ bzw. CuZn37F37 ²¹ oder CuZn40 CuZn40 CuSn5Zn5Pb5-C bzw. CC491K und CC499K bzw. CuSn5ZnPb2-C nac	nach EN 12163 nach EN 1982	nach EN 12164 G-CuSn5ZnPb oder CC499K nach EN 1982
16	5	7	nach EN 1982	
25	50	CUZN38Pb2 ² bzw. CW608N und CuZn38Pb2 ² bzw. CW608N und CuZn37 ² bzw. CW508L	nach EN 12164	
Druck-Nennweiteneint Druckfestigkeit muss r	l iteneinteilung gemäl muss nach EN 1251	Druck-Nennweiteneinteilung gemäß [1]. Bei Zwischentemperaturen ist zu interpolieren. Der Tabellenwert gilt für die maximale Temperatur. Druckfestigkeit muss nach EN 12516-3 nachgewiesen sein	olieren. Der Tabellenwert gilt für die m	aximale Temperatur.

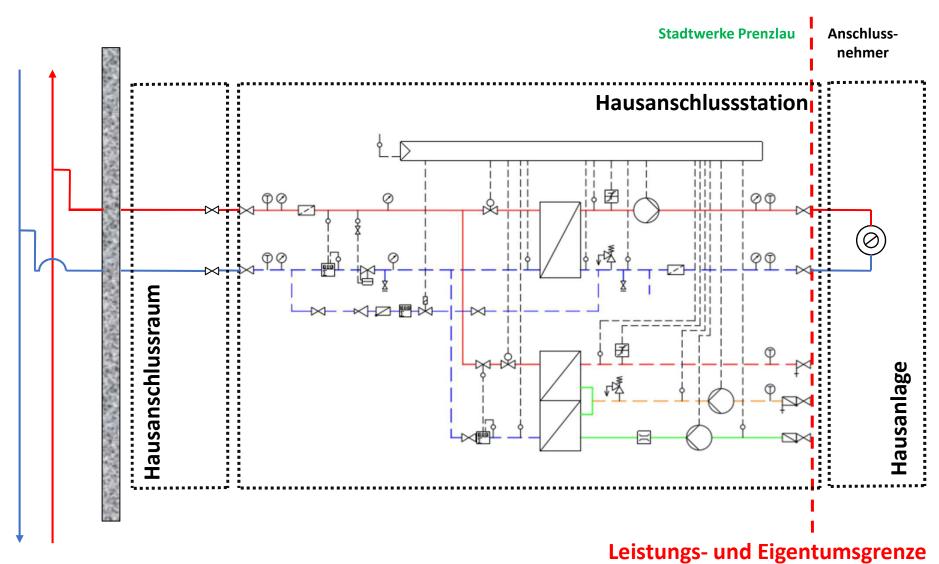
Tabelle 15: Zubehörteile für Kupferrohre

Maximal zulässiger Druck PS [bar] ¹⁾	alle Fe (weich, Abmes (Prüfbesch	rohre EN 1057 stigkeitsstufen halbhart, hart) nahtlos ssungen [mm] einigungen nach EN id nicht erforderlich)	Verbindungsarten
	TS ≤ 120 °C	TS ≤ 200 °C	Notwendige Qualifikation des Personals Weichlöten/Hartlöten/Schweißen/ (Pressen/Stecken)
6	267x3,0	267x3,0	Weichlöten: - max. Temperatur 110 °C - max. Durchmesser 108 mm - Lot nach EN ISO 9453
10	219x3,0 a	219x3,0 159x3,0 ₂₎	- Flussmittel nach Angaben des Lotherstellers (EN 29454-1) - Anforderungen an Betrieb, Lötpersonal und Beurteilung der Lötverbindung gem. DVS 1903-1,-2 Hartlöten: - max. Temperatur 150 °C bei geeignetem Lot und Flussmittel
16	159x3,0 133x3,0 108x2,5 88,9x2,0	133x3,0 108x2,5 88,9x2,0 76,1x2,0 64x2,0 54x1,5 42x1,2	 max. Durchmesser 108 mm Lot nach EN ISO 17672 Flussmittel nach Angaben des Lotherstellers (EN 1045) Anforderungen an Betrieb, Lötpersonal und Beurteilung der Lötverbindung gem. DVS 1903-1,-2 Geprüfter Löter gem. EN ISO 13585
25	76,1x2,0 64x2,0 54x1,5 42x1,2 35x1,2 28x1,0 22x1,0 18x1,0 15x1,0	35x1,2 28x1,0 22x1,0 18x1,0 15x1,0	Schweißen: - max. Temperatur bis 200 °C - Schweisszusatzstoffe EN 24373 - Geprüfter Schweißer gem. EN ISO 9606-3 - Anforderungen an die Beurteilung der Schweissverbindung ist gesondert zu vereinbaren Schneidringverschraubungen: metallisch dichtend Die Eignung für Druck und Temperatur muss nachgewiesen werden. Pressen: Für den Einsatz von Press-Systemen in der Fernwärme gelten die Vorgaben von AGFW FW 524.

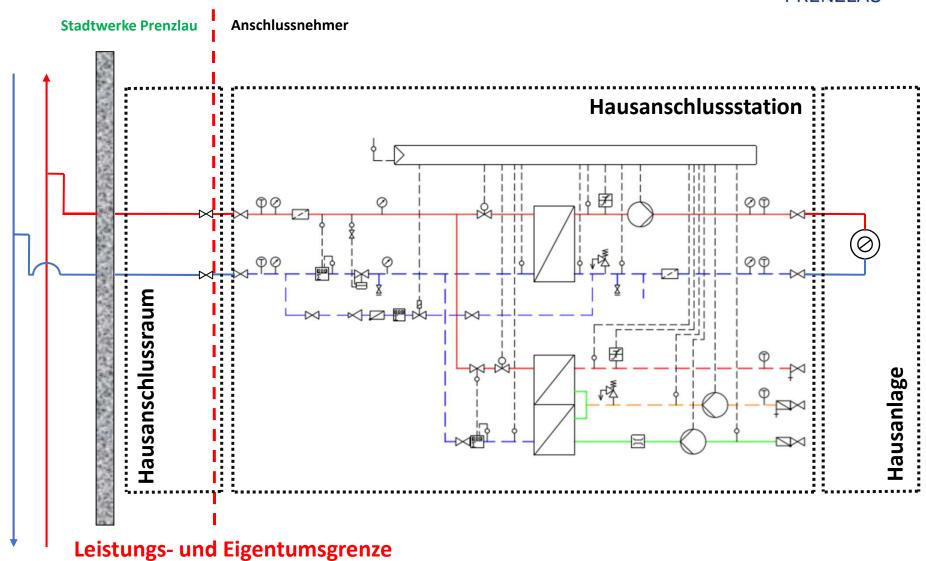
¹⁾ Druck-Nennweiteneinteilung gemäß [1]. Zwischentemperaturen sind zu interpolieren. Der Tabellenwert gilt für die maximale Temperatur.

Tabelle 16: Kupferrohre

²⁾ Einschließlich der Rohrabmessungen der nachfolgenden höheren Druckstufen


18 Netzparameter der Fernwärmenetze Prenzlau

						,					
			Friedhofstraße/ Georg-Dreke-	Georg-Dreke-							
	Innenstadt (vor	Innenstadt	Rosa-		Schwedter Str.						
	Mischb.)	(nach Mischb.	nburg-Str.								
Ž	Nr. Wert	Wert	Wert	Wert	Wert	Dim.	Dim. Formelzei Parameter		Erläuterung	vorgeschlagenen	_
							chen			Auslegung Sekundärseitig	
	1 110	0 110	110	110		110 °C	OVN max	maximale Netzvorlauftemperatur	abgesicherte Netztemperatur (Kessel)		_
	2 70	0/ 20		02	0/	ွ	OVN min	minimale Netzvorlauftemperatur			_
	3 45	5 45				45 °C	OR max	maximale Rücklauftemperatur 1	Plattenheizkörper	60/40	_
	4 35	5 35				35 °C	OR max	maximale Rücklauftemperatur 2	Fußbodenheizung - FBH	40/30	_
	5 30		30	30		္စ		maximale Rücklauftemperatur 3	Raumluftheizung - RLH	70/30	_
_	6 20					20 °C	OR max	maximale Rücklauftemperatur 4	g; Eigenheim nach	70/20	_
									Absprache		_
	7 60	09 0	09	09		၁, 09		temperatur bei	Zirkulation		_
								Zirkulationsbetrieb			_
	8 90	0 75	06	06		೦, 06	NVO	Netzvorlauftemperatur für maximale	Auslegungstemperatur für WÜ		_
								Wärmeleistung			_
	9 40	0 40	40	40		40 K	N OV	(vertragliche)			_
								Netztemperaturdifferenz für			_
								Ermittlung des Volumenstroms			_
-	10 var.	var.	var.	var.	var.	¥	N OV	(vertragliche)	(Zeile 3-6) = thermische		_
								Auslegungstemperaturen des	Auslegungstemperatur		_
								Wārmeübertragers			_
_	11 50	0 50	20	20		50 K	N OV	(vertragliche)	70 °C/ 20 °C		_
								Auslegungstemperaturen des			
1	12 6	9 9	4	9	9	6 bar	p max		abgesicherter Netzdruck, nicht		_
									Betriebsdruck! (Kesselsicherheit)		_
_	13 6	9 9	9	9		6 bar	∆ p max	maximaler Netzdifferenzdruck	am Hausanschluss vor evtl. vorhandenem		_
									Differenzdruckregler		_
	14 0,25	5 0,25	0,25	0,25	0,25	0,25 bar	∆ p min	minimaler Netzdifferenzdruck	am Hausanschluss hinter evtl.		_
									vorhandenem Differenzdruckregler		_
_	15 PN10	0 PN10	PN10	PN10	PN10 bar	par	P zul	erforderliche Druckfestigkeit	erforderliche Druckfestigkeit		_
								\neg	Übergabestation, primärseitig		_
	16 120	0 120	120	120	120	120 °C	luz 0	erforderliche Temperaturfestigkeit			
_	17 gleitend	konstant	gleitend	gleitend	gleitend	,		Netzfahrweise			_
Ш	konstant				konstant						_



19 Schaltschemata FW

